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Abstract

Meta Learning for Control

by

Yan Duan

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Pieter Abbeel, Chair

In this thesis, we discuss meta learning for control: policy learning algorithms that can
themselves generate algorithms that are highly customized towards a certain domain of tasks.
The generated algorithms can be orders of magnitudes faster than human-designed, general
purpose algorithms. We begin with a thorough review of existing policy learning algorithms
for control, which motivates the need for better algorithms that can solve complicated tasks
with affordable sample complexity. Then, we discuss two formulations of meta learning.
The first formulation is meta learning for reinforcement learning, where the task is specified
through a reward function, and the agent needs to improve its performance by acting in
the environment, receiving scalar reward signals, and adjusting its strategy according to
the information it receives. The second formulation is meta learning for imitation learning,
where the task is specified through an expert demonstration of the task, and the agent needs
to mimic the behavior of the expert to achieve good performance under new situations of the
same task, as measured by the underlying objective of the expert (which is not directly given
to the agent). We present practical algorithms for both formulations, and show that these
algorithms can acquire sophisticated learning behaviors on par with learning algorithms
designed by human experts, and can scale to complex, high-dimensional tasks. We also
analyze their current limitations, including challenges associated with long horizons and
imperfect demonstrations, which suggest important venues for future work. Finally, we
conclude with several promising future directions of meta learning for control.
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1
I N T R O D U C T I O N

1.1 reinforcement learning

Reinforcement learning (RL) studies algorithms for sequential decision problems, where
an agent continually interacts with an environment, and should optimize its performance
over time according to a desired metric.

Mathematically, we assume decisions are made at discrete intervals. At each time step
t, the agent receives the current state st (or the current observation ot = fobs(st), which
makes the problem partially observable) from the environment, and computes an action
at. Then, the environment receives and executes this action, and advances the state to
st+1 according to a transition probability function, P(st+1|st,at). It also computes a scalar
reward signal, rt according to a reward function R(st,at). Both st+1 and rt are sent back
to the agent, and the loop continues. Some problems may optionally have a finite horizon
T , after which the sequential process terminates. Additionally, a real-valued discount
factor γ (0 < γ 6 1) may be given, which injects a preference of rewards received sooner
rather than later. The objective is to optimize the expected sum of discounted rewards
over time:

η = E[

T∑
t=0

γtrt]

where we allow T = ∞ to incorporate both the finite- and infinite-horizon cases.
Reinforcement learning is a general framework that can be used to study a wide range

of problems. In robotic applications, the state can be the current positions and velocities
of all objects in the system, the observation can include sensory information such as RGB
images, point clouds, and joint angles of the robot, the action can be the torques applied
to each joint, and the reward signal can be designed based on the task at hand: for
example, to learn a controller that can make the robot move forward, the reward can be
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the displacement of the robot in the forward direction. Computer games also constitute
a natural category, where the state can include the current memory and CPU state, the
observation can include the raw pixels of the current screen (or a concatenation of past
few frames), the action can be the keyboard, mouse, or joystick inputs, and the reward
can be the score of the game.

For a more thorough overview of reinforcement learning and its history, we refer the
reader to R. S. Sutton and Barto (1998).

1.2 deep learning

Deep learning employs powerful function approximators such as neural networks in
order to learn representations from data. This stands in sharp contrast to traditional
approaches in machine learning, which have typically required hand-crafted features.
Originally conceived in the 70s and 80s (Werbos, 1974; Parker, 1985; LeCun, 1985; D.
Williams and Hinton, 1986), deep learning has grown increasingly popular in recent
years, achieving state-of-the-art performance in speech recognition, image classification,
machine translation, and many other applications. We refer the reader to LeCun et al.
(2015) for a high-level overview of the underlying techniques and recent advances in
deep learning, and to Goodfellow et al. (2016) for a more comprehensive account of the
subject.

1.3 deep reinforcement learning

Deep reinforcement learning (Deep RL) studies reinforcement learning algorithms that
make use of expressive function approximators such as neural networks. This allows
the algorithm to scale up to high-dimensional sensory inputs and complex control logic,
without requiring manual feature engineering or limiting oneself to simple, insufficiently
expressive models. Its success can be traced back to the 90s, with the work by Tesauro
(1994) demonstrating a neural-network-learned strategy achieving superior performance
on the backgammon game. Recently, advances in deep learning have led to significant
progress in Deep RL, with impressive applications such as learning to play Atari games
from raw pixels (Mnih et al., 2013; Mnih et al., 2015), mastering the game of Go (Silver
et al., 2016), acquiring advanced manipulation skills (Levine et al., 2016), and learning
high-dimensional locomotion controllers (Schulman et al., 2015; Schulman et al., 2016;
T. P. Lillicrap et al., 2016). In Chapter 2 we extensively benchmark recently proposed
deep reinforcement learning algorithms for continuous control, and we refer the reader
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to Y. Li (2017) for a more recent survey of the algorithms and applications of deep
reinforcement learning.

1.4 meta learning

The success of deep learning is inseparable from the availability of vast amount of anno-
tated data. For example, state-of-the-art image classifiers (Krizhevsky et al., 2012; Zeiler
and Fergus, 2014; Szegedy et al., 2015; He et al., 2016) are typically trained on ImageNet
(Deng et al., 2009; Russakovsky et al., 2015), a publicly available dataset consisting of
millions of images labeled with corresponding object categories; Baidu’s Deep Speech
2 system (Amodei et al., 2016) utilizes over 10,000 hours of speech data; top neural ma-
chine translation models (Wu et al., 2016) are trained on hundreds of millions of sentence
pairs.

While deep learning systems have achieved great performance in the big data regime,
there has been growing interest in reducing the amount of data required. For instance, as
the largest e-commerce retailer in the U.S., Amazon now has over 300 million products
in its inventory, and the number is growing at a pace of hundreds of thousands more per
day (ScrapeHero, 2017). For an object detection system at this scale (which can be used
for product recommendations), it is impractical to collect a large number of annotated
examples per category, and it is essential to be able to adapt to new categories using very
few samples.

As another example, personalized recommendation systems need to build up each
user’s profile from as little history per user as possible, so that they can tailor towards
each user’s interest from early on.

In these cases, what we want is not a static classifier, but instead an algorithm that
can efficiently train new classifiers orders of magnitude more efficiently than typical
deep learning systems. Such an algorithm likely needs to incorporate domain-specific
information, so that it does not need to rely on new data to provide such knowledge.
On the other hand, we want to avoid manually designing new algorithms for each such
domain.

Meta learning, which learns a learning algorithm from data, is a promising approach
towards resolving this dilemma. By training on a large number of related tasks, where
each task may only have a small amount of annotated data, meta learning automati-
cally produces a domain-specific algorithm that captures the common knowledge among
training tasks, and can be used to solve new tasks quickly.

Pioneered by Ellis (1965); S. J. Russell (1987); Schmidhuber (1987); Thrun and Pratt
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(1998); Naik and Mammone (1992); Schmidhuber et al. (1996); Baxter (2000), meta learn-
ing is not a new idea. However, compared to these early approaches, where the class of
algorithms that may be meta-learned are often constrained, modern formulation of meta
learning can take advantage of deep neural networks, which are expressive, scalable,
and amenable for optimization. Here, a parameterized model specifies the algorithm at
interest, and the parameters can be optimized with respect to an objective related to the
algorithm’s actual task performance.

Formally, a meta learning problem consists of a distribution over tasks T. Typically we
have a collection of training tasks, Ttrain, and test tasks, Ttest, which are drawn from T. At
meta-training time1, the parameters of a parameterized algorithm πθ (often called a “fast”
algorithm) are optimized with respect to a (meta-)training loss: ET∼Ttrain [Ltrain(T,πθ)]. At
meta-test time, the algorithm is evaluated by a (meta-)test loss: ET∼Ttest [Ltest(T,πθ)].

The above formulation is very general, and we will look at some examples below.

1.4.1 Meta Learning for Supervised Learning

In meta learning for supervised learning, also known as few-shot learning, the distribution
over tasks consists of different mini-datasets, where each dataset may differ by the input
samples, or their corresponding labels. Two commonly used benchmark datasets are (1)
Omniglot (Lake et al., 2011), a dataset of thousands of handwritten characters, with 20

samples per character, and (2) ImageNet (Deng et al., 2009; Russakovsky et al., 2015) or
a smaller version of it, MiniImageNet (Vinyals et al., 2016b), where different subsets of
the object categories give rise to different mini-datasets.

After a specific task T is chosen, the algorithm is given a number of training examples
consisting of input samples and their corresponding labels. The algorithm should then
make predictions about test samples in T. Typically, the training loss is chosen to be a
differentiable surrogate, such as the cross-entropy loss, whereas the evaluation metric on
test data is typically the classification accuracy.

The literature on few-shot learning exhibits great diversity. Overall we can divide them
into three categories: metric-based, optimization-based, and fully generic models.

Metric-based models: This class of algorithms is based on learning an adaptive metric
to find a small subset of training data most relevent to the test data, and predict the
test label based on their corresponding labels. One specific instantiation makes use of a
siamese network (Koch, 2015), which takes a pair of input samples and predicts whether

1 The prefix “meta-” is used to distinguish from the training and test phases that may be present within
each specific task.
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they are from the same class. At test time, as new sample arrives, it is compared with
each training sample using the learned network, and the label of the training sample
with the highest score is chosen. Several extensions to this framework are made. Shyam
et al. (2017) use differentiable visual attentions based on DRAW (Gregor et al., 2015) to
perform pairwise comparisons. Another work by Mehrotra and Dukkipati (2017) uses
residual networks (He et al., 2016) to structure the siamese network. It also makes use
of generative adversarial networks for regularization. At the time of writing, it is the
current state of the art among all siamese-network-based architectures on Omniglot and
MiniImageNet.

Another instantiation of this model structures the algorithm as performing weighted
nearest neighbor in a embedding space, where the embedding can adapt itself based on
the data available through a meta-learned mechanism. Vinyals et al. (2016b) use cosine
distance as the similarity metric. More recently, Snell et al. (2017) propose to use squared
Euclidean distance between the embeddings of the sample and the cluster center of each
class, and observe improved performance.

Optimization-based models: Since most deep neural networks for supervised learn-
ing are trained via gradient descent, it is natural to incorporate similar elements into
the fast algorithm. Munkhdalai and H. Yu (2017) propose an architecture that contains
both slow weights, which are learned during the training process of meta learning, and
fast weights, which are computed per task during testing. The fast weights are com-
puted conditioned on gradient information with respect to an auxiliary loss. Ravi and
Larochelle (2017) propose to learn the initial weights and an update rule by utilizing an
LSTM (Hochreiter and Schmidhuber, 1997) , which receives gradient information as its
input. Finn et al. (2017a) propose a simplified model that only learns the initial weights
while using a fixed learning rate. More recently, Z. Li et al. (2017) propose an alternative
model that learns both the initial weight and an elementwise learning rate. At the time
of writing, it is the current state of the art among all optimization-based methods.

Fully generic models: Observe that the training-evaluation loop can be considered
as a generic sequential prediction problem: first, the training samples and their labels
are received sequentially; then, the model makes predictions about test samples as they
arrive. Based on this observation, people have considered using generic recurrent ar-
chitectures to represent the fast algorithm, without imposing specific assumptions on
how it should behave. Early work by Baxter (1993); Hochreiter et al. (2001); Younger et
al. (2001) train recurrent neural networks using backpropagation or evolution. However
they only evaluate on low-dimensional synthetic datasets. More recently, Santoro et al.
(2016) utilize memory-augmented architectures such as neural Turing machines, and ob-
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serve improved performance over LSTM on more modern datasets including Omniglot
and MiniImageNet. Mishra et al. (2017) further propose to use temporal convolutions
and attentions, which have demonstrated great performance on generative modeling
(Oord et al., 2016b; Oord et al., 2016a) and machine translation (Kalchbrenner et al.,
2016). This simple model outperforms all other attempts to incorporate human-designed
algorithmic components, and is the current state of the art.

1.4.2 Meta Learning for Optimization

It has long been observed that the choice of optimization algorithms and hyperparame-
ters has significant effect on the overall convergence speed in training neural networks
(Rumelhart et al., 1985). Modern update rules that incorporate first- and second-order
statistics, such as momentum (Nesterov, 1983; Tseng, 1998), Rprop (Riedmiller and Braun,
1993), Adagrad (Duchi et al., 2011), RMSProp (Tieleman and Hinton, 2012), and Adam
(D. Kingma and Ba, 2014), can often outperform plain gradient descent, although their
merits have been recently debated (A. C. Wilson et al., 2017). Rather than hand-designing
optimizers, we can also apply meta learning to optimization, where the goal is to obtain
optimizers that can converge faster and to better solutions.

In this scenario, a task T consists of a particular neural network architecture, an initial
set of parameters φ0, and a loss function L(φ), which is often assumed to be differen-
tiable with respect to φ. The algorithm πθ receives the current parameters φt, the current
loss L(φt), and its gradient ∂LT(φ)∂φ (φt) when available, and iteratively computes the new
parameters φt+1. The goal is to minimize the final loss, L(φT ), which is typically chosen
to be the meta-test loss. At meta-training time, a more shaped loss function is usually
used, such as a weighted sum of all intermediate values:

∑T
t=1wtL(φt), where greater

emphasis can be imposed on later time steps as training proceeds.
Limited by computing resources, earlier work on meta learning for optimization typ-

ically consider simple forms of update rules, such as linear functions of hand-selected
features (S. Bengio et al., 1992; Y. Bengio et al., 1990; Chalmers, 1990) or small neural
networks (Naik and Mammone, 1992; Runarsson and Jonsson, 2000).

Benefiting from significant improvements in hardware, recent work has experimented
with much larger-scale models. Andrychowicz et al. (2016) train an LSTM to control
per-parameter update given each parameter’s gradient information, with weight sharing
across all parameters. The trained optimizer is evaluated on problems such as image clas-
sification and neural style transfer (Gatys et al., 2015). Wichrowska et al. (2017) further
improve the scalability and generalizability of Andrychowicz et al. (2016) by employ-
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ing a hierarchical recurrent architecture. Y. Chen et al. (2017) also consider optimizing
non-differentiable black-box objectives using a similar formulation.

In addition to using gradient descent to learn a neural network optimizer, several
alternatives have been considered. K. Li and Malik (2017) uses guided policy search
(Levine and Abbeel, 2014) to train an LSTM. Bello et al. (2017) apply ideas presented
in Baker et al. (2016); Zoph and Le (2016) to search among update rules expressible by
simple programs.

1.4.3 Other Applications

In addition to the more widely studied applications of supervised learning and opti-
mization, meta learning has also been applied to active learning (Woodward and Finn,
2017; Contardo et al., 2017), where a meta-learned algorithm decides which samples
should be labeled next to receive incremental supervision, and generative models (Ed-
wards and Storkey, 2017; Bartunov and Vetrov, 2016; Bornschein et al., 2017), where the
meta-learned algorithm should be able to generate data from the same distribution after
seeing only a few samples.

1.5 meta learning for control

Similar to supervised learning, learning algorithms for control often suffer from high
sample complexity, which in this context is defined as the amount of experience that
needs to be collected to achieve learning. This challenge is complicated by the following
factors specific to control:

• Exploration: Rather than having access to a static dataset, the agent needs to take
actions in the environment to build up its experience. To achieve the best sample
complexity, the agent needs to efficiently explore different regions of the environ-
ment to extract most relevant information about the task. There has been vast lit-
erature on exploration (Kearns and S. Singh, 2002; Brafman and Tennenholtz, 2002;
Jaksch et al., 2010; Ghavamzadeh et al., 2015; Sun et al., 2011; Kolter and A. Y.
Ng, 2009; Pazis and Parr, 2013; Osband et al., 2014; R. S. Sutton and Barto, 1998;
Schmidhuber, 2010; Oudeyer and Kaplan, 2009). However, practical algorithms are
usually based on simple heuristics that aims to be generally applicable (B. C. Stadie
et al., 2015; Oh et al., 2015; Osband et al., 2016; Montúfar et al., 2016; Mohamed and
Rezende, 2015; Houthooft et al., 2016; Tang et al., 2017; Fortunato et al., 2017; Pathak
et al., 2017; Fu et al., 2017; Plappert et al., 2017; M. Bellemare et al., 2016; Ostrovski
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et al., 2017), which are far from optimal or how human explores different strategies
when learning a new skill.

• Credit Assignment: Rather than having ground truth labels, the agent does not
directly receive supervision about which actions it should take. Instead, a reward
signal is provided that scores only the current state and action. Credit assignment
is the process of figuring out which action(s) are contributing to the overall re-
ward received by the agent (Hull, 1943; Minsky, 1961; R. S. Sutton and Barto, 1998).
This is a challenging problem because all the past actions contribute to the cur-
rent state. Usually, the choice of an RL algorithm prescribes a specific strategy for
credit assignmentl, such as learning a baseline or a critic (R. J. Williams, 1992b;
Konda and Tsitsiklis, 2000; Kimura, Kobayashi, et al., 2000; Greensmith et al., 2004;
Wawrzyński, 2009; Hafner and Riedmiller, 2011).

• Hierarchy: As the problem complexity increases, it becomes substantially harder
for the agent to efficiently explore its environment and assign credits to its past.
Hierarchical RL (HRL) can greatly reduce the complexity by making the search
space more structured. However, tabula rasa HRL faces a classic chicken-and-egg
issue: without solving the task first, how can one know what a good hierarchi-
cal structure would be? Indeed, although recent attempts of generic hierarchical
RL algorithms show that the agent can learn to make decisions hierarchically in
high-dimensional tasks (A. Vezhnevets et al., 2016; Bacon et al., 2017; A. S. Vezh-
nevets et al., 2017; Dilokthanakul et al., 2017), we have yet to observe significant
improvement in learning speed consistent across many environments.

Inspired by recent progress in meta learning for supervised learning, it is natural to
consider similar techniques for control, or more specifically reinforcement learning and
imitation learning. The central theme of this thesis is that a meta learning approach
can potentially combine the representation power of deep neural networks, as well as
the ability to incorporate domain-specific knowledge about how the learned algorithm
should explore the environment, assign credits to past experience, make decisions hier-
archically, and infer intentions from raw demonstrations.

The main contributions of this thesis are the following:
• In Chapter 2, we review recent advances of deep reinforcement learning algorithms

for control. The evaluation results of recently published algorithms on a set of chal-
lenging benchmark tasks suggests that better algorithms need to be developed for
improved exploration, hierarchical RL, and reduced sample complexity. Although
we can continue developing better algorithms ourselves (and there has been great
recent work in this direction, such as Z. Wang et al. (2016); Hessel et al. (2017); Wu
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et al. (2017); Metz et al. (2017); Schulman et al. (2017)), fully solving all the chal-
lenges listed above would very likely require injecting more prior knowledge into
how the algorithm behaves, which motivates the need for meta learning. This work
was previously published as Y. Duan et al. (2016a).

• In Chapter 3, we propose a meta learning framework for reinforcement learning,
RL2. Following the terminology in Section 1.4, here each task T consists of a com-
plete specification of an MDP. Both the meta-train loss Ltrain and the meta-test loss
Ltest are the performance of the agent across a fixed number of episodes on the
given task. This work was previously published as (Y. Duan et al., 2016b).

• In Chapter 4, we propose a meta learning framework for imitation learning. In
this framework, each task T consists of a full specification of an MDP except the
reward, as well as a single demonstration. Both Ltrain and Ltest are the performance
of the agent on a single episode when conditioning on the demonstration. However,
we cannot train on Ltrain directly since the reward is not given; instead, imitation
learning algorithms develop various proxy objectives that can be optimized. This
work was previously published as (Y. Duan et al., 2017).

• Finally, in Chapter 5, we conclude with possible future directions of meta learning
for control.
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2
B E N C H M A R K I N G D E E P R E I N F O R C E M E N T L E A R N I N G

2.1 overview

Reinforcement learning addresses the problem of how agents should learn to take ac-
tions to maximize cumulative reward through interactions with the environment. The
traditional approach for reinforcement learning algorithms requires carefully chosen fea-
ture representations, which are usually hand-engineered.

Recently, significant progress has been made by combining advances in deep learning
for learning feature representations (Krizhevsky et al., 2012; Hinton et al., 2012) with re-
inforcement learning, tracing back to much earlier work of Tesauro (1995) and Bertsekas
and Tsitsiklis (1995). Notable examples are training agents to play Atari games based
on raw pixels (Guo et al., 2014; Mnih et al., 2015; Schulman et al., 2015) and to acquire
advanced manipulation skills using raw sensory inputs (Levine et al., 2016; T. P. Lillicrap
et al., 2016; Watter et al., 2015a). Impressive results have also been obtained in training
deep neural network policies for 3D locomotion and manipulation tasks (Schulman et al.,
2015; Schulman et al., 2016; Heess et al., 2015b).

Along with this recent progress, the Arcade Learning Environment (ALE) (M. G. Belle-
mare et al., 2013) has become a popular benchmark for evaluating algorithms designed
for tasks with high-dimensional state inputs and discrete actions. However, these al-
gorithms do not always generalize straightforwardly to tasks with continuous actions,
leading to a gap in our understanding. For instance, algorithms based on Q-learning
quickly become infeasible when naive discretization of the action space is performed,
due to the curse of dimensionality (Bellman, 1957; T. P. Lillicrap et al., 2016). In the con-
tinuous control domain, where actions are continuous and often high-dimensional, we
argue that the existing control benchmarks fail to provide a comprehensive set of chal-
lenging problems (see Section 2.7 for a review of existing benchmarks). Benchmarks have
played a significant role in other areas such as computer vision and speech recognition.
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Examples include MNIST (LeCun et al., 1998), Caltech101 (Fei-Fei et al., 2006), CIFAR
(Krizhevsky and Hinton, 2009), ImageNet (Deng et al., 2009), PASCAL VOC (Evering-
ham et al., 2010), BSDS500 (Martin et al., 2001), SWITCHBOARD (Godfrey et al., 1992),
TIMIT (Garofolo et al., 1993), Aurora (Hirsch and Pearce, 2000), and VoiceSearch (D. Yu
et al., 2007). The lack of a standardized and challenging testbed for reinforcement learn-
ing and continuous control makes it difficult to quantify scientific progress. Systematic
evaluation and comparison will not only further our understanding of the strengths of
existing algorithms, but also reveal their limitations and suggest directions for future
research.

We attempt to address this problem and present a benchmark consisting of 31 contin-
uous control tasks. These tasks range from simple tasks, such as cart-pole balancing, to
challenging tasks such as high-DOF locomotion, tasks with partial observations, and hi-
erarchically structured tasks. Furthermore, a range of reinforcement learning algorithms
are implemented on which we report novel findings based on a systematic evaluation
of their effectiveness in training deep neural network policies. The benchmark and refer-
ence implementations are available at https://github.com/rllab/rllab, allowing for the
development, implementation, and evaluation of new algorithms and tasks.

2.2 preliminaries

In this section, we define the notation used in subsequent sections.
The implemented tasks conform to the standard interface of a finite-horizon discounted

Markov decision process (MDP), defined by the tuple (S,A,P, r, ρ0,γ, T), where S is a
(possibly infinite) set of states, A is a set of actions, P : S×A× S→ R>0 is the transition
probability distribution, r : S×A→ R is the reward function, ρ0 : S→ R>0 is the initial
state distribution, γ ∈ (0, 1] is the discount factor, and T is the horizon.

For partially observable tasks, which conform to the interface of a partially observable
Markov decision process (POMDP), two more components are required, namely Ω, a set
of observations, and O : S×Ω→ R>0, the observation probability distribution.

Most of our implemented algorithms optimize a stochastic policy πθ : S×A → R>0.
Let η(π) denote its expected discounted reward: η(π) = Eτ

[∑T
t=0 γ

tr(st,at)
]
, where

τ = (s0,a0, . . .) denotes the whole trajectory, s0 ∼ ρ0(s0), at ∼ π(at|st), and st+1 ∼

P(st+1|st,at).
For deterministic policies, we use the notation µθ : S→ A to denote the policy instead.

The objective for it has the same form as above, except that now we have at = µ(st).

11
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(a) (b) (c) (d)

Figure 1: Illustration of basic tasks: (a) Cart-Pole Balancing and Cart-Pole Swing Up; (b) Moun-
tain Car; (c) Acrobot Swing Up; and (d) Double Inverted Pendulum Balancing.

2.3 tasks

The tasks in the presented benchmark can be divided into four categories: basic tasks,
locomotion tasks, partially observable tasks, and hierarchical tasks. For each task, we
provide a brief description as well as motivation for including it in the testbed. More
detailed specifications are given in the supplementary materials and in the source code.

We choose to implement all tasks using physics simulators rather than symbolic equa-
tions, since the former approach is less error-prone and permits easy modification of
each task. Tasks with simple dynamics are implemented using Box2D (Catto, 2011), an
open-source, freely available 2D physics simulator. Tasks with more complicated dy-
namics, such as locomotion, are implemented using MuJoCo (Todorov et al., 2012), a 3D
physics simulator with better modeling of contacts.

2.3.1 Basic Tasks

We implement five basic tasks that have been widely analyzed in reinforcement learning
and control literature.

Cart-Pole Balancing: This classic task in dynamics and control theory has been orig-
inally described by Stephenson (1908), and first studied in a learning context by Don-
aldson (1960), Widrow (1964), and Michie and Chambers (1968). An inverted pendulum
is mounted on a pivot point on a cart. The cart itself is restricted to linear movement,
achieved by applying horizontal forces. Due to the system’s inherent instability, continu-
ous cart movement is needed to keep the pendulum upright.

Cart-Pole Swing Up: A slightly more complex version of the previous task has been
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proposed by Kimura and Kobayashi (1999) in which the system should not only be able
to balance the pole, but first succeed in swinging it up into an upright position. This
task extends the working range of the inverted pendulum to 360°. This is a nonlinear
extension of the previous task (Doya, 2000).

Mountain Car: We implement a continuous version of the classic task described by
Moore (1990). A car has to escape a valley by repetitive application of tangential forces.
Because the maximal tangential force is limited, the car has to alternately drive up along
the two slopes of the valley in order to build up enough inertia to overcome gravity. This
brings a challenge of exploration, since before first reaching the goal among all trials, a
locally optimal solution exists, which is to drive to the point closest to the target and stay
there for the rest of the episode.

Acrobot Swing Up: In this widely-studied task an under-actuated, two-link robot has
to swing itself into an upright position (DeJong and Spong, 1994; Murray and Hauser,
1991; Doya, 2000). It consists of two joints of which the first one has a fixed position and
only the second one can exert torque. The goal is to swing the robot into an upright
position and stabilize around that position. The controller not only has to swing the
pendulum in order to build up inertia, similar to the Mountain Car task, but also has to
decelerate it in order to prevent it from tipping over.

Double Inverted Pendulum Balancing: This task extends the Cart-Pole Balancing task
by replacing the single-link pole by a two-link rigid structure. As in the former task, the
goal is to stabilize the two-link pole near the upright position. This task is more difficult
than single-pole balancing, since the system is even more unstable and requires the
controller to actively maintain balance (Furuta et al., 1978).

2.3.2 Locomotion Tasks

In this category, we implement six locomotion tasks of varying dynamics and difficulty.
The goal for all the tasks is to move forward as quickly as possible. These tasks are
more challenging than the basic tasks due to high degrees of freedom. In addition, a
great amount of exploration is needed to learn to move forward without getting stuck at
local optima. Since we penalize for excessive controls as well as falling over, during the
initial stage of learning, when the robot is not yet able to move forward for a sufficient
distance without falling, apparent local optima exist including staying at the origin or
diving forward cautiously.

Swimmer (Purcell, 1977; Coulom, 2002; Levine and Koltun, 2013; Schulman et al.,
2015): The swimmer is a planar robot with 3 links and 2 actuated joints. Fluid is sim-
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(a) (b) (c) (d)

(e) (f) (g)

Figure 2: Illustration of locomotion tasks: (a) Swimmer; (b) Hopper; (c) Walker; (d) Half-Cheetah;
(e) Ant; (f) Simple Humanoid; and (g) Full Humanoid.

ulated through viscosity forces, which apply drag on each link, allowing the swimmer
to move forward. This task is the simplest of all locomotion tasks, since there are no
irrecoverable states in which the swimmer can get stuck, unlike other robots which may
fall down or flip over. This places less burden on exploration.

Hopper (Murthy and Raibert, 1984; Erez et al., 2011; Levine and Koltun, 2013; Schul-
man et al., 2015): The hopper is a planar monopod robot with 4 rigid links, corresponding
to the torso, upper leg, lower leg, and foot, along with 3 actuated joints. More exploration
is needed than the swimmer task, since a stable hopping gait has to be learned without
falling. Otherwise, it may get stuck in a local optimum of diving forward.

Walker (Raibert and Hodgins, 1991; Erez et al., 2011; Levine and Koltun, 2013; Schul-
man et al., 2015): The walker is a planar biped robot consisting of 7 links, corresponding
to two legs and a torso, along with 6 actuated joints. This task is more challenging than
hopper, since it has more degrees of freedom, and is also prone to falling.

Half-Cheetah (Wawrzyński, 2007; Heess et al., 2015b): The half-cheetah is a planar
biped robot with 9 rigid links, including two legs and a torso, along with 6 actuated
joints.

14



Ant (Schulman et al., 2016): The ant is a quadruped with 13 rigid links, including four
legs and a torso, along with 8 actuated joints. This task is more challenging than the
previous tasks due to the higher degrees of freedom.

Simple Humanoid (Tassa et al., 2012; Schulman et al., 2016): This is a simplified hu-
manoid model with 13 rigid links, including the head, body, arms, and legs, along with
10 actuated joints. The increased difficulty comes from the increased degrees of freedom
as well as the need to maintain balance.

Full Humanoid (Tassa et al., 2012): This is a humanoid model with 19 rigid links and
28 actuated joints. It has more degrees of freedom below the knees and elbows, which
makes the system higher-dimensional and harder for learning.

2.3.3 Partially Observable Tasks

In real-life situations, agents are often not endowed with perfect state information. This
can be due to sensor noise, sensor occlusions, or even sensor limitations that result in
partial observations. To evaluate algorithms in more realistic settings, we implement
three variations of partially observable tasks for each of the five basic tasks described
in Section 2.3.1, leading to a total of 5× 3 = 15 additional tasks. These variations are
described below.

Limited Sensors: For this variation, we restrict the observations to only provide po-
sitional information (including joint angles), excluding velocities. An agent now has to
learn to infer velocity information in order to recover the full state. Similar tasks have
been explored in Gomez and Miikkulainen (1998); Schäfer and Udluft (2005); Heess et al.
(2015a); Wierstra et al. (2007).

Noisy and Delayed Observations: In this case, sensor noise is simulated through the
addition of Gaussian noise to the observations. We also introduce a time delay between
taking an action and the action being in effect, accounting for physical latencies (Hester
and Stone, 2013). Agents now need to learn to integrate both past observations and past
actions to infer the current state. Similar tasks have been proposed in Bakker (2001).

System Identification: For this category, the underlying physical model parameters
are varied across different episodes (Szita et al., 2003). The agents must learn to general-
ize across different models, as well as to infer the model parameters from its observation
and action history.
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2.3.4 Hierarchical Tasks

Many real-world tasks exhibit hierarchical structure, where higher level decisions can
reuse lower level skills (Parr and S. Russell, 1998; R. S. Sutton et al., 1999; Dietterich,
2000). For instance, robots can reuse locomotion skills when exploring the environment.
We propose several tasks where both low-level motor controls and high-level decisions
are needed. Each of these two components operates on a different time scale and calls
for a natural hierarchy in order to efficiently learn the task.

(a) (b)

Figure 3: Illustration of hierarchical tasks: (a) Locomotion + Food Collection; and (b) Locomotion
+ Maze.

Locomotion + Food Collection: For this task, the agent needs to learn to control either
the swimmer or the ant robot to collect food and avoid bombs in a finite region. The
agent receives range sensor readings about nearby food and bomb units. It is given a
positive reward when it reaches a food unit, or a negative reward when it reaches a
bomb.

Locomotion + Maze: For this task, the agent needs to learn to control either the swim-
mer or the ant robot to reach a goal position in a fixed maze. The agent receives range
sensor readings about nearby obstacles as well as its goal (when visible). A positive
reward is given only when the robot reaches the goal region.
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2.4 algorithms

In this section, we briefly summarize the algorithms implemented in our benchmark,
and note any modifications made to apply them to general parametrized policies. We
implement a range of gradient-based policy search methods, as well as two gradient-
free methods for comparison with the gradient-based approaches.

2.4.1 Batch Algorithms

Most of the implemented algorithms are batch algorithms. At each iteration, N trajec-
tories {τi}

N
i=1 are generated, where τi = {(sit,a

i
t, r

i
t)}
T
t=0 contains data collected along the

ith trajectory. For on-policy gradient-based methods, all the trajectories are sampled un-
der the current policy. For gradient-free methods, they are sampled under perturbed
versions of the current policy.

REINFORCE (R. J. Williams, 1992a): This algorithm estimates the gradient of expected
return ∇θη(πθ) using the likelihood ratio trick:

∇̂θη(πθ) =
1

NT

N∑
i=1

T∑
t=0

∇θ logπ(ait|s
i
t; θ)(R

i
t − b

i
t),

where Rit =
∑T
t ′=t γ

t ′−trit ′ and bit is a baseline that only depends on the state sit to
reduce variance. Hereafter, an ascent step is taken in the direction of the estimated gra-
dient. This process continues until θk converges.

Truncated Natural Policy Gradient (TNPG) (Kakade, 2002; Peters et al., 2003; Bagnell
and Schneider, 2003; Schulman et al., 2015): Natural Policy Gradient improves upon RE-
INFORCE by computing an ascent direction that approximately ensures a small change
in the policy distribution. This direction is derived to be I(θ)−1∇θη(πθ), where I(θ) is the
Fisher information matrix (FIM). We use the step size suggested by Peters and Schaal

(2008): α =

√
δKL (∇θη(πθ)T I(θ)−1∇θη(πθ))

−1. Finally, we replace ∇θη(πθ) and I(θ) by
their empirical estimates.

For neural network policies with tens of thousands of parameters or more, generic
Natural Policy Gradient incurs prohibitive computation cost by forming and inverting
the empirical FIM. Instead, we study Truncated Natural Policy Gradient (TNPG) in this
chapter, which computes the natural gradient direction without explicitly forming the
matrix inverse, using a conjugate gradient algorithm that only requires computing I(θ)v
for arbitrary vector v. TNPG makes it practical to apply natural gradient in policy search
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setting with high-dimensional parameters, and we refer the reader to Schulman et al.
(2015) for more details.

Reward-Weighted Regression (RWR) (Peters and Schaal, 2007; Kober and Peters,
2009): This algorithm formulates the policy optimization as an Expectation-Maximization
problem to avoid the need to manually choose learning rate, and the method is guaran-
teed to converge to a locally optimal solution. At each iteration, this algorithm optimizes
a lower bound of the log-expected return: θ = arg maxθ ′ L(θ ′), where

L(θ) =
1

NT

N∑
i=1

T∑
t=0

logπ(ait|s
i
t; θ)ρ(R

i
t − b

i
t)

Here, ρ : R → R>0 is a function that transforms raw returns to nonnegative values.
Following M. P. Deisenroth et al. (2013), we choose ρ to be ρ(R) = R− Rmin, where Rmin
is the minimum return among all trajectories collected in the current iteration.

Relative Entropy Policy Search (REPS) (Peters et al., 2010): This algorithm limits
the loss of information per iteration and aims to ensure a smooth learning progress
(M. P. Deisenroth et al., 2013). At each iteration, we collect all trajectories into a dataset
D = {(si,ai, ri, s ′i)}

M
i=1, where M is the total number of samples. Then, we first solve for

the dual parameters [η∗,ν∗] = arg minη ′,ν ′ g(η ′,ν ′) s.t. η > 0, where

g(η,ν) = ηδKL + η log

(
1

M

M∑
i=1

eδi(ν)/η

)
.

Here δKL > 0 controls the step size of the policy, and δi(ν) = ri+ νT (φ(s ′i) −φ(si)) is the
sample Bellman error. We then solve for the new policy parameters:

θk+1 = arg max
θ

1

M

M∑
i=1

eδi(ν
∗)/η∗ logπ(ai|si; θ).

Trust Region Policy Optimization (TRPO) (Schulman et al., 2015): This algorithm
allows more precise control on the expected policy improvement than TNPG through
the introduction of a surrogate loss. At each iteration, we solve the following constrained
optimization problem (replacing expectations with samples):

maximizeθ Es∼ρθk ,a∼πθk

[
πθ(a|s)

πθk(a|s)
Aθk(s,a)

]
s.t. Es∼ρθk

[DKL(πθk(·|s)‖πθ(·|s))] 6 δKL
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where ρθ = ρπθ is the discounted state-visitation frequencies induced by πθ, Aθk(s,a),
known as the advantage function, is estimated by the empirical return minus the base-
line, and δKL is a step size parameter which controls how much the policy is allowed to
change per iteration. We follow the procedure described in the original paper for solving
the optimization, which results in the same descent direction as TNPG with an extra line
search in the objective and KL constraint.

Cross Entropy Method (CEM) (Rubinstein, 1999; Szita and Lőrincz, 2006): Unlike pre-
viously mentioned methods, which perform exploration through stochastic actions, CEM
performs exploration directly in the policy parameter space. At each iteration, we pro-
duce N perturbations of the policy parameter: θi ∼ N(µk,Σk), and perform a rollout
for each sampled parameter. Then, we compute the new mean and diagonal covariance
using the parameters that correspond to the top q-quantile returns.

Covariance Matrix Adaption Evolution Strategy (CMA-ES) (Hansen and Ostermeier,
2001): Similar to CEM, CMA-ES is a gradient-free evolutionary approach for optimizing
nonconvex objective functions. In our case, this objective function equals the average
sampled return. In contrast to CEM, CMA-ES estimates the covariance matrix of a multi-
variate normal distribution through incremental adaption along evolution paths, which
contain information about the correlation between consecutive updates.

2.4.2 Online Algorithms

Deep Deterministic Policy Gradient (DDPG) (T. P. Lillicrap et al., 2016): Compared to
batch algorithms, the DDPG algorithm continuously improves the policy as it explores
the environment. It applies gradient descent to the policy with minibatch data sampled
from a replay pool, where the gradient is computed via

∇̂θη(µθ) =
B∑
i=1

∇aQφ(si,a)
∣∣
a=µθ(si)

∇θµθ(si)

where B is the batch size. The critic Q is trained via gradient descent on the `2 loss of the
Bellman error L = 1

B

∑B
i=1(yi−Qφ(si,ai))

2, where yi = ri+γQ ′φ ′(s
′
i,µ
′
θ ′(s

′
i)). To improve

stability of the algorithm, we use target networks for both the critic and the policy when
forming the regression target yi. We refer the reader to T. P. Lillicrap et al. (2016) for a
more detailed description of the algorithm.

19



2.4.3 Recurrent Variants

We implement direct applications of the aforementioned batch-based algorithms to re-
current policies. The only modification required is to replace π(ait|s

i
t) by π(ait|o

i
1:t,a

i
1:t−1),

where oi1:t and a1:t−1 are the histories of past and current observations and past actions.
Recurrent versions of reinforcement learning algorithms have been studied in many ex-
isting works, such as Bakker (2001), Schäfer and Udluft (2005), Wierstra et al. (2007), and
Heess et al. (2015a).

2.5 experiment setup

In this section, we elaborate on the experimental setup used to generate the results.
Performance Metrics: For each report unit (a particular algorithm running on a par-

ticular task), we define its performance as 1∑I
i=1Ni

∑I
i=1

∑Ni
n=1 Rin, where I is the number

of training iterations, Ni is the number of trajectories collected in the ith iteration, and
Rin is the undiscounted return for the nth trajectory of the ith iteration,

Hyperparameter Tuning: For the DDPG algorithm, we used the hyperparametes re-
ported in T. P. Lillicrap et al. (2016). For the other algorithms, we follow the approach in
Mnih et al. (2015), and we select two tasks in each category, on which a grid search of
hyperparameters is performed. Each choice of hyperparameters is executed under five
random seeds. The criterion for the best hyperparameters is defined as mean(returns) −
std(returns). This metric selects against large fluctuations of performance due to overly
large step sizes.

For the other tasks, we try both of the best hyperparameters found in the same cate-
gory, and report the better performance of the two. This gives us insights into both the
maximum possible performance when extensive hyperparameter tuning is performed,
and the robustness of the best hyperparameters across different tasks.

Policy Representation: For basic, locomotion, and hierarchical tasks and for batch
algorithms, we use a feed-forward neural network policy with 3 hidden layers, consisting
of 100, 50, and 25 hidden units with tanh nonlinearity at the first two hidden layers,
which map each state to the mean of a Gaussian distribution. The log-standard deviation
is parameterized by a global vector independent of the state, as done in Schulman et al.
(2015). For all partially observable tasks, we use a recurrent neural network with a single
hidden layer consisting of 32 LSTM hidden units (Hochreiter and Schmidhuber, 1997).

For the DDPG algorithm which trains a deterministic policy, we follow T. P. Lillicrap
et al. (2016). For both the policy and the Q function, we use the same architecture of
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Figure 4: Performance as a function of the number of iterations; the shaded area depicts the mean
± the standard deviation over five different random seeds: (a) Performance comparison
of all algorithms in terms of the average reward on the Walker task; (b) Comparison
between REINFORCE, TNPG, and TRPO in terms of the mean KL-divergence on the
Walker task; (c) Performance comparison on TNPG and TRPO on the Swimmer task;
(d) Performance comparison of all algorithms in terms of the average reward on the
Half-Cheetah task.

a feed-forward neural network with 2 hidden layers, consisting of 400 and 300 hidden
units with relu activations.

Baseline: For all gradient-based algorithms except REPS, we can subtract a baseline
from the empirical return to reduce variance of the optimization. We use a linear function
as the baseline with a time-varying feature vector.

2.6 results

The main evaluation results are presented in Table 1. The tasks on which the grid search
is performed are marked with (*). In each entry, the pair of numbers shows the mean
and standard deviation of the normalized cumulative return using the best possible
hyperparameters.

REINFORCE: Despite its simplicity, REINFORCE is an effective algorithm in optimiz-
ing deep neural network policies in most basic and locomotion tasks. Even for high-DOF
tasks like Ant, REINFORCE can achieve competitive results. However we observe that
REINFORCE sometimes suffers from premature convergence to local optima as noted
by Peters and Schaal (2008), which explains the performance gaps between REINFORCE
and TNPG on tasks such as Walker (Fig. 4a). By visualizing the final policies, we can
see that REINFORCE results in policies that tend to jump forward and fall over to maxi-
mize short-term return instead of acquiring a stable walking gait to maximize long-term
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return. In Fig. 4b, we can observe that even with a small learning rate, steps taken by
REINFORCE can sometimes result in large changes to policy distribution, which may
explain the fast convergence to local optima.

TNPG and TRPO: Both TNPG and TRPO outperform other batch algorithms by a
large margin on most tasks, confirming that constraining the change in the policy distri-
bution results in more stable learning (Peters and Schaal, 2008).

Compared to TNPG, TRPO offers better control over each policy update by performing
a line search in the natural gradient direction to ensure an improvement in the surrogate
loss function. We observe that hyperparameter grid search tends to select conservative
step sizes (δKL) for TNPG, which alleviates the issue of performance collapse caused by
a large update to the policy. By contrast, TRPO can robustly enforce constraints with
larger a δKL value and hence speeds up learning in some cases. For instance, grid search
on the Swimmer task reveals that the best step size for TNPG is δKL = 0.05, whereas
TRPO’s best step-size is larger: δKL = 0.1. As shown in Fig. 4c, this larger step size
enables slightly faster learning.

RWR: RWR is the only gradient-based algorithm we implemented that does not re-
quire any hyperparameter tuning. It can solve some basic tasks to a satisfactory degree,
but fails to solve more challenging tasks such as locomotion. We observe empirically
that RWR shows fast initial improvement followed by significant slow-down, as shown
in Fig. 4d.

REPS: Our main observation is that REPS is especially prone to early convergence to
local optima in case of continuous states and actions. Its final outcome is greatly affected
by the performance of the initial policy, an observation that is consistent with the orig-
inal work of Peters et al. (2010). This leads to a bad performance on average, although
under particular initial settings the algorithm can perform on par with others. Moreover,
the tasks presented here do not assume the existence of a stationary distribution, which
is assumed in Peters et al. (2010). In particular, for many of our tasks, transient behav-
ior is of much greater interest than steady-state behavior, which agrees with previous
observation by Hoof et al. (2015),

Gradient-free methods: Surprisingly, even when training deep neural network poli-
cies with thousands of parameters, CEM achieves very good performance on certain ba-
sic tasks such as Cart-Pole Balancing and Mountain Car, suggesting that the dimension
of the searching parameter is not always the limiting factor of the method. However, the
performance degrades quickly as the system dynamics becomes more complicated. We
also observe that CEM outperforms CMA-ES, which is remarkable as CMA-ES estimates
the full covariance matrix. For higher-dimensional policy parameterizations, the compu-
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tational complexity and memory requirement for CMA-ES become noticeable. On tasks
with high-dimensional observations, such as the Full Humanoid, the CMA-ES algorithm
runs out of memory and fails to yield any results, denoted as N/A in Table 1.

DDPG: Compared to batch algorithms, we found that DDPG was able to converge
significantly faster on certain tasks like Half-Cheetah due to its greater sample efficiency.
However, it was less stable than batch algorithms, and the performance of the policy can
degrade significantly during training. We also found it to be more susceptible to scaling
of the reward. In our experiment for DDPG, we rescaled the reward of all tasks by a
factor of 0.1, which seems to improve the stability.

Partially Observable Tasks: We experimentally verify that recurrent policies can find
better solutions than feed-forward policies in Partially Observable Tasks but recurrent
policies are also more difficult to train. As shown in Table 1, derivative-free algorithms
like CEM and CMA-ES work considerably worse with recurrent policies. Also we note
that the performance gap between REINFORCE and TNPG widens when they are ap-
plied to optimize recurrent policies, which can be explained by the fact that a small
change in parameter space can result in a bigger change in policy distribution with
recurrent policies than with feedforward policies.

Hierarchical Tasks: We observe that all of our implemented algorithms achieve poor
performance on the hierarchical tasks, even with extensive hyperparameter search and
500 iterations of training. It is an interesting direction to develop algorithms that can
automatically discover and exploit the hierarchical structure in these tasks.

2.7 related work

In this section, we review existing benchmarks of continuous control tasks. The earliest
efforts of evaluating reinforcement learning algorithms started in the form of individual
control problems described in symbolic form. Some widely adopted tasks include the
inverted pendulum (Stephenson, 1908; Donaldson, 1960; Widrow, 1964), mountain car
(Moore, 1990), and Acrobot (DeJong and Spong, 1994). These problems are frequently
incorporated into more comprehensive benchmarks.

Some reinforcement learning benchmarks contain low-dimensional continuous control
tasks, such as the ones introduced above, including RLLib (Abeyruwan, 2013), MMLF
(Metzen and Edgington, 2011), RL-Toolbox (Neumann, 2006), JRLF (Kochenderfer, 2006),
Beliefbox (Dimitrakakis et al., 2007), Policy Gradient Toolbox (Peters, 2002), and Ap-
proxRL (Busoniu, 2010). A series of RL competitions has also been held in recent years
(Dutech et al., 2005; Dimitrakakis et al., 2014), again with relatively low-dimensional ac-
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tions. In contrast, our benchmark contains a wider range of tasks with high-dimensional
continuous state and action spaces.

Previously, other benchmarks have been proposed for high-dimensional control tasks.
Tdlearn (Dann et al., 2014) includes a 20-link pole balancing task, DotRL (Papis and
Wawrzyński, 2013) includes a variable-DOF octopus arm and a 6-DOF planar cheetah
model, PyBrain (Schaul et al., 2010) includes a 16-DOF humanoid robot with standing
and jumping tasks, RoboCup Keepaway (Stone et al., 2005) is a multi-agent game which
can have a flexible dimension of actions by varying the number of agents, and SkyAI (Ya-
maguchi and Ogasawara, 2010) includes a 17-DOF humanoid robot with crawling and
turning tasks. Other libraries such as CL-Square (Riedmiller et al., 2012) and RLPark (De-
gris et al., 2013) provide interfaces to actual hardware, e.g., Bioloid and iRobot Create.
In contrast to these aforementioned testbeds, our benchmark makes use of simulated en-
vironments to reduce computation time and to encourage experimental reproducibility.
Furthermore, it provides a much larger collection of tasks of varying difficulty.

2.8 discussion

In this chapter, a benchmark of continuous control problems for reinforcement learning
is presented, covering a wide variety of challenging tasks. We implemented several re-
inforcement learning algorithms, and presented them in the context of general policy
parameterizations. Results show that among the implemented algorithms, TNPG, TRPO,
and DDPG are effective methods for training deep neural network policies. Still, the poor
performance on the proposed hierarchical tasks calls for new algorithms to be developed.
Implementing and evaluating existing and newly proposed algorithms will be our con-
tinued effort. By providing an open-source release of the benchmark, we encourage other
researchers to evaluate their algorithms on the proposed tasks.

2.9 task specifications

Below we provide some specifications for the task observations, actions, and rewards.
Please refer to the benchmark source code (https://github.com/rllab/rllab) for complete
specification of physics parameters.
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2.9.1 Basic Tasks

Cart-Pole Balancing: The observation consists of the cart position x, pole angle θ, the cart
velocity ẋ, and the pole velocity θ̇. The 1D action consists of the horizontal force applied
to the cart body. The reward function is given by r(s,a) := 10− (1− cos(θ)) − 10−5‖a‖22.
The episode terminates when |x| > 2.4 or |θ| > 0.2.

Cart-Pole Swing Up: Same observation and action as in balancing. The reward func-
tion is given by r(s,a) := cos(θ). The episode terminates when |x| > 3, with a penalty of
−100.

Mountain Car: The observation is given by the horizontal position x and the horizontal
velocity ẋ of the car. The reward is given by r(s,a) := −1+ height, with height the car’s
vertical offset. The episode terminates when the car reaches a target height of 0.6. Hence
the goal is to reach the target as soon as possible.

Acrobot Swing Up: The observation includes the two joint angles, θ1 and θ2, and their
velocities, θ̇1 and θ̇2. The action is the torque applied at the second joint. The reward is
defined as r(s,a) := −‖tip(s) − tiptarget‖2, where tip(s) computes the Cartesian position
of the tip of the robot given the joint angles. No termination condition is applied.

Double Inverted Pendulum Balancing: The observation includes the cart position x,
joint angles (θ1 and θ2), and joint velocities (θ̇1 and θ̇2). We encode each joint angle as
its sine and cosine values. The action is the same as in cart-pole tasks. The reward is
given by r(s,a) = 10− 0.01x2tip − (ytip − 2)2 − 10−3 · θ̇21 − 5 · 10−3 · θ̇22, where xtip,ytip are
the coordinates of the tip of the pole. No termination condition is applied. The episode
is terminated when ytip 6 1.

2.9.2 Locomotion Tasks

Swimmer: The 13-dim observation includes the joint angles, joint velocities, as well as
the coordinates of the center of mass. The reward is given by r(s,a) = vx − 0.005‖a‖22,
where vx is the forward velocity. No termination condition is applied.

Hopper: The 20-dim observation includes joint angles, joint velocities, the coordinates
of center of mass, and constraint forces. The reward is given by r(s,a) := vx − 0.005 ·
‖a‖22 + 1, where the last term is a bonus for being “alive.” The episode is terminated
when zbody < 0.7 where zbody is the z-coordinate of the body, or when |θy| < 0.2, where
θy is the forward pitch of the body.

Walker: The 21-dim observation includes joint angles, joint velocities, and the coordi-
nates of center of mass. The reward is given by r(s,a) := vx− 0.005 · ‖a‖22. The episode is
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terminated when zbody < 0.8, zbody > 2.0, or when |θy| > 1.0.
Half-Cheetah: The 20-dim observation includes joint angles, joint velocities, and the

coordinates of the center of mass. The reward is given by r(s,a) = vx − 0.05 · ‖a‖22. No
termination condition is applied.

Ant: The 125-dim observation includes joint angles, joint velocities, coordinates of the
center of mass, a (usually sparse) vector of contact forces, as well as the rotation matrix
for the body. The reward is given by r(s,a) = vx − 0.005 · ‖a‖22 − Ccontact + 0.05, where
Ccontact penalizes contacts to the ground, and is given by 5 ·10−4 · ‖Fcontact‖22, where Fcontact
is the contact force vector clipped to values between −1 and 1. The episode is terminated
when zbody < 0.2 or when zbody > 1.0.

Simple Humanoid: The 102-dim observation includes the joint angles, joint velocities,
vector of contact forces, and the coordinates of the center of mass. The reward is given by
r(s,a) = vx − 5 · 10−4‖a‖22 −Ccontact −Cdeviation + 0.2, where Ccontact = 5 · 10−6 · ‖Fcontact‖,
and Cdeviation = 5 · 10−3 · (v2y + v2z) to penalize deviation from the forward direction. The
episode is terminated when zbody < 0.8 or when zbody > 2.0.

Full Humanoid: The 142-dim observation includes the joint angles, joint velocities,
vector of contact forces, and the coordinates of the center of mass. The reward and
termination condition is the same as in the Simple Humanoid model.

2.9.3 Partially Observable Tasks

Limited Sensors: The full description is included in the main text.
Noisy Observations and Delayed Actions: For all tasks, we use a Gaussan noise with

σ = 0.1. The time delay is as follows: Cart-Pole Balancing 0.15 sec, Cart-Pole Swing
Up 0.15 sec, Mountain Car 0.15 sec, Acrobot Swing Up 0.06 sec, and Double Inverted
Pendulum Balancing 0.06 sec. This corresponds to 3 discretization frames for each task.

System Identifications: For Cart-Pole Balancing and Cart-Pole Swing Up, the pole
length is varied uniformly between, 50% and 150%. For Mountain Car, the width of
the valley varies uniformly between 75% and 125%. For Acrobot Swing Up, each of the
pole length varies uniformly between 50% and 150%. For Double Inverted Pendulum
Balancing, each of the pole length varies uniformly between 83% and 167%. Please refer
to the benchmark source code for reference values.
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Table 2: Experiment Setup

Basic & Locomotion Partially Observable Hierarchical

Sim. steps per Iter. 50,000 50,000 50,000

Discount(λ) 0.99 0.99 0.99

Horizon 500 100 500

Num. Iter. 500 300 500

2.9.4 Hierarchical Tasks

Locomotion + Food Collection: During each episode, 8 food units and 8 bombs are
placed in the environment. Collecting a food unit gives +1 reward, and collecting a
bomb gives −1 reward. Hence the best cumulative reward for a given episode is 8.

Locomotion + Maze: During each episode, a +1 reward is given when the robot
reaches the goal. Otherwise, the robot receives a zero reward throughout the episode.

2.10 experiment parameters

For all batch gradient-based algorithms, we use the same time-varying feature encoding
for the linear baseline:

φs,t = concat(s, s� s, 0.01t, (0.01t)2, (0.01t)3, 1)

where s is the state vector and � represents element-wise product.
Table 2 shows the experiment parameters for all four categories. We will then detail

the hyperparameter search range for the selected tasks and report best hyperparameters,
shown in Table 3, Table 4, Table 5, Table 6, Table 7, and Table 8.
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Table 3: Learning Rate α for REINFORCE

Search Range Best

Cart-Pole Swing Up [1× 10−4, 1× 10−1] 5× 10−3

Double Inverted Pendulum [1× 10−4, 1× 10−1] 5× 10−3

Swimmer [1× 10−4, 1× 10−1] 1× 10−2

Ant [1× 10−4, 1× 10−1] 5× 10−3

Table 4: Step Size δKL for TNPG

Search Range Best

Cart-Pole Swing Up [1× 10−3, 5× 100] 5× 10−2

Double Inverted Pendulum [1× 10−3, 5× 100] 3× 10−2

Swimmer [1× 10−3, 5× 100] 1× 10−1

Ant [1× 10−3, 5× 100] 3× 10−1

Table 5: Step Size δKL for TRPO

Search Range Best

Cart-Pole Swing Up [1× 10−3, 5× 100] 5× 10−2

Double Inverted Pendulum [1× 10−3, 5× 100] 1× 10−3

Swimmer [1× 10−3, 5× 100] 5× 10−2

Ant [1× 10−3, 5× 100] 8× 10−2
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Table 6: Step Size δKL for REPS

Search Range Best

Cart-Pole Swing Up [1× 10−3, 5× 100] 1× 10−2

Double Inverted Pendulum [1× 10−3, 5× 100] 8× 10−1

Swimmer [1× 10−3, 5× 100] 3× 10−1

Ant [1× 10−3, 5× 100] 8× 10−1

Table 7: Initial Extra Noise for CEM

Search Range Best

Cart-Pole Swing Up [1× 10−3, 1] 1× 10−2

Double Inverted Pendulum [1× 10−3, 1] 1× 10−1

Swimmer [1× 10−3, 1] 1× 10−1

Ant [1× 10−3, 1] 1× 10−1

Table 8: Initial Standard Deviation for CMA-ES

Search Range Best

Cart-Pole Swing Up [1× 10−3, 1× 103] 1× 103

Double Inverted Pendulum [1× 10−3, 1× 103] 3× 10−1

Swimmer [1× 10−3, 1× 103] 1× 10−1

Ant [1× 10−3, 1× 103] 1× 10−1
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3
R L 2 : FA S T R E I N F O R C E M E N T L E A R N I N G V I A S L O W
R E I N F O R C E M E N T L E A R N I N G

3.1 overview

Deep reinforcement learning has achieved many impressive results, including playing
Backgammon (Tesauro, 1995), playing Atari games from raw pixels (Guo et al., 2014;
Mnih et al., 2015; Schulman et al., 2015), mastering the game of Go (Silver et al., 2016),
and acquiring advanced manipulation and locomotion skills (Levine et al., 2016; T. P.
Lillicrap et al., 2016; Watter et al., 2015b; Heess et al., 2015b; Schulman et al., 2015; Schul-
man et al., 2016). However, many of the successes come at the expense of high sample
complexity. For example, the state-of-the-art Atari results require tens of thousands of
episodes of experience (Mnih et al., 2015) per game. To master a game, one would need
to spend nearly 40 days playing it with no rest. In contrast, humans and animals are
capable of learning a new task in a very small number of trials. Continuing the previous
example, the human player in Mnih et al. (2015) can perform well on a game after just
a few trials – although they may be eventually caught up by the AI. We argue that the
reason for this sharp contrast is largely due to the lack of a good prior, which results in
these deep RL agents needing to rebuild their knowledge about the world from scratch.

Although Bayesian reinforcement learning provides a solid framework for incorporat-
ing prior knowledge into the learning process (Strens, 2000; Ghavamzadeh et al., 2015;
Kolter and A. Y. Ng, 2009), exact computation of the Bayesian update is intractable in all
but the simplest cases. Thus, practical reinforcement learning algorithms often incorpo-
rate a mixture of Bayesian and domain-specific ideas to bring down sample complexity
and computational burden. Notable examples include guided policy search with un-
known dynamics (Levine and Abbeel, 2014) and PILCO (M. Deisenroth and Rasmussen,
2011). These methods can learn a task using a few minutes to a few hours of real expe-
rience, compared to days or even weeks required by previous methods (Schulman et al.,
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2015; Schulman et al., 2016; T. P. Lillicrap et al., 2016). However, these methods tend to
make assumptions about the environment (e.g., instrumentation for access to the state
at learning time), or become computationally intractable in high-dimensional settings
(Wahlström et al., 2015).

Rather than hand-designing domain-specific reinforcement learning algorithms, we
take a different approach in this chapter: we view the learning process of the agent
itself as an objective, which can be optimized using standard reinforcement learning
algorithms. The objective is averaged across all possible MDPs according to a specific
distribution, which reflects the prior that we would like to distill into the agent. We
structure the agent as a recurrent neural network, which receives past rewards, actions,
and termination flags as inputs in addition to the normally received observations. Fur-
thermore, its internal state is preserved across episodes, so that it has the capacity to
perform learning in its own hidden activations. The learned agent thus also acts as the
learning algorithm, and can adapt to the task at hand when deployed.

There has been significant prior work using recurrent neural networks to solve par-
tially observable MDPs (Wierstra et al., 2007; Heess et al., 2015a; Mnih et al., 2016) – and
in fact, many of the previously studied problems can be reformulated under RL2. How-
ever, our emphasis here is on proposing a generally applicable transformation, which
reduces learning RL algorithms to ordinary reinforcement learning.

We evaluate this approach on two sets of classical problems, multi-armed bandits
and tabular MDPs. These problems have been extensively studied, and there exist al-
gorithms that achieve asymptotically optimal performance. We demonstrate that our
method, named RL2, can achieve performance comparable with these theoretically justi-
fied algorithms. Next, we evaluate RL2 on a vision-based navigation task implemented
using the ViZDoom environment (Kempka et al., 2016), showing that RL2 can also
scale to high-dimensional problems. Videos of our experiments are available at https:
//bit.ly/nips2017-rl2.

3.2 method

3.2.1 Preliminaries

We define a discrete-time finite-horizon discounted Markov decision process (MDP) by
a tuple M = (S,A,P, r, ρ0,γ, T), in which S is a state set, A an action set, P : S×A×
S → R+ a transition probability distribution, r : S × A → [−Rmax,Rmax] a bounded
reward function, ρ0 : S → R+ an initial state distribution, γ ∈ [0, 1] a discount factor,
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and T the horizon. In policy search methods, we typically optimize a stochastic policy
πθ : S×A→ R+ parametrized by θ. The objective is to maximize its expected discounted
return, η(πθ) = Eτ[

∑T
t=0 γ

tr(st,at)], where τ = (s0,a0, . . .) denotes the whole trajectory,
s0 ∼ ρ0(s0), at ∼ πθ(at|st), and st+1 ∼ P(st+1|st,at).

3.2.2 Formulation

We now describe our formulation, which casts learning an RL algorithm as a reinforce-
ment learning problem, and hence the name RL2.

We assume knowledge of a set of MDPs, denoted by M, and a distribution over them:
ρM : M → R+. We only need to sample from this distribution. We use n to denote the
total number of episodes allowed to spend with a specific MDP. We define a trial to be
such a series of episodes of interaction with a fixed MDP.

Episode 1 Episode 2

s0 s1 s2

h0 h1

a0

r0,d0

h2 h3

s3

a1

r1,d1

a2

r2,d2

s0 s1 s2

h4 h5

a0

r0,d0

h6

a1

r1,d1

Agent

MDP 1
Episode 1

s0 s1 …

h0 h1

a0

r0,d0

…

a1

Agent

MDP 2
…

…

…

Trial 1 Trial 2

(a) Procedure of agent-environment interaction. (b) Policy architecture.

Figure 5: Illustration of the main components.

This process of interaction between an agent and the environment is illustrated in
Fig. 5a. Here, each trial happens to consist of two episodes, hence n = 2. For each trial,
a separate MDP is drawn from ρM, and for each episode, a fresh s0 is drawn from the
initial state distribution specific to the corresponding MDP. Upon receiving an action
at produced by the agent, the environment computes reward rt, steps forward, and
computes the next state st+1. If the episode has terminated, it sets termination flag dt to
1, which otherwise defaults to 0. Together, the next state st+1, action at, reward rt, and
termination flag dt, are concatenated to form the input to the policy (or the fast learner)1,
which, conditioned on the hidden state ht+1, generates the next hidden state ht+2 and
action at+1. At the end of an episode, the hidden state of the fast learner is preserved to
the next episode, but not preserved between trials.

1 To make sure that the inputs have a consistent dimension, we use placeholder values for the initial input
to the fast learner.
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The objective under this formulation is to maximize the expected total discounted re-
ward accumulated during a single trial rather than a single episode. Maximizing this
objective is equivalent to minimizing the cumulative pseudo-regret (Bubeck and Cesa-
Bianchi, 2012). Since the underlying MDP changes across trials, as long as different
strategies are required for different MDPs, the agent must act differently according to its
belief over which MDP it is currently in. Hence, the agent is forced to integrate all the
information it has received, including past actions, rewards, and termination flags, and
adapt its strategy continually. Hence, we have set up an end-to-end optimization process,
where the agent is encouraged to learn a “fast” reinforcement learning algorithm.

For clarity of exposition, we have defined the “inner” problem (of which the agent
sees n each trials) to be an MDP rather than a POMDP. However, the method can also be
applied in the partially-observed setting without any conceptual changes. In the partially
observed setting, the agent is faced with a sequence of POMDPs, and it receives an obser-
vation ot instead of state st at time t. The visual navigation experiment in Section 3.3.3,
is actually an instance of this POMDP setting.

3.2.3 Architecture

We represent the fast learner as a general recurrent neural network as illustrated in
Fig. 5b. Each timestep, it receives the tuple (s,a, r,d) as input, which is embedded using
a function φ(s,a, r,d) and provided as input to an RNN.

To alleviate the difficulty of training RNNs due to vanishing and exploding gradients
(Y. Bengio et al., 1994), we use Gated Recurrent Units (GRUs) (Cho et al., 2014a) which
have been demonstrated to have good empirical performance (Chung et al., 2014; Józe-
fowicz et al., 2015). The output of the GRU is fed to a fully connected layer followed by
a softmax function, which forms the distribution over actions.

We have also experimented with alternative architectures which explicitly reset part of
the hidden state each episode of the sampled MDP, but we did not find any improvement
over the simple architecture described above.

3.2.4 Learning the Fast Learner

After formulating the task as a reinforcement learning problem, we can readily use stan-
dard off-the-shelf (slow) RL algorithms to optimize the fast learner. We use Proximal
Policy Optimization (PPO) (Schulman et al., 2017), because of its excellent empirical per-
formance, and because it does not require excessive hyperparameter tuning. To reduce
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variance in the stochastic gradient estimation, we use a baseline which is also represented
as an RNN using GRUs as building blocks. We optionally apply Generalized Advantage
Estimation (GAE) (Schulman et al., 2016) to further reduce the variance.

3.3 evaluation

We designed experiments to answer the following questions:
• Can RL2 learn algorithms that achieve good performance on MDP classes with

special structure, relative to existing algorithms tailored to this structure that have
been proposed in the literature?

• Can RL2 scale to high-dimensional tasks?
• How does RL2 compare with alternative methods?

For the first question, we evaluate RL2 on two sets of tasks, multi-armed bandits (MAB)
and tabular MDPs. These problems have been studied extensively in the reinforcement
learning literature, and this body of work includes algorithms with guarantees of asymp-
totic optimality. We demonstrate that our approach achieves comparable performance to
these theoretically justified algorithms.

For the second question, we evaluate RL2 on a vision-based navigation task. Our exper-
iments show that the fast learner makes effective use of the learned visual information
and also short-term information acquired from previous episodes.

For the third question, we compare RL2 with a recent meta-learning algorithm, MAML
(Finn et al., 2017a). While RL2 puts no assumptions about how the fast learning algorithm
should operate and learns it entirely end-to-end, MAML fixes the fast learning algorithm
to be policy gradient, and learns a good initialization of the policy weights so that it can
quickly adapt. We compare RL2 to MAML on all RL tasks in Finn et al. (2017a).

3.3.1 Multi-armed bandits

Multi-armed bandit problems are a subset of MDPs where the agent’s environment is
stateless. Specifically, there are k arms (actions), and at every time step, the agent pulls
one of the arms, say i, and receives a reward drawn from an unknown distribution:
our experiments take each arm to be a Bernoulli distribution with parameter pi. The
goal is to maximize the total reward obtained over a fixed number of time steps. The
key challenge is balancing exploration and exploitation—“exploring” each arm enough
times to estimate its distribution (pi), but eventually switching over to “exploitation” of
the best arm. Despite the simplicity of multi-arm bandit problems, their study has led to
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a rich theory and a collection of algorithms with optimality guarantees.
Using RL2, we can train an RNN fast learner to solve bandit problems by training

it on a given distribution ρM. If the learning is successful, the resulting fast learner
should be able to perform competitively with the theoretically optimal algorithms. We
randomly generated bandit problems by sampling each parameter pi from the uniform
distribution on [0, 1]. After training the RNN fast learner with RL2, we compared it
against the following strategies:

• Random: this is a baseline strategy, where the agent pulls a random arm each time.
• Dynamic programming (DP): when both the horizon and the number of arms are

small, we can solve for the optimal strategy exactly using dynamic programming.
However as the experiments suggest, this method scales very poorly.

• Gittins index (J. C. Gittins, 1979): this method gives the Bayes optimal solution in
the discounted infinite-horizon case, by computing an index separately for each
arm, and taking the arm with the largest index. While this chapter shows it is
sufficient to independently compute an index for each arm (hence avoiding com-
binatorial explosion with the number of arms), it doesn’t show how to tractably
compute these individual indices exactly. We follow the practical approximations
described in J. Gittins et al. (2011), Chakravorty and Mahajan (2013), and Whittle
(1982), and choose the best-performing approximation for each setup.

• UCB1 (Auer, 2002): this method estimates an upper-confidence bound, and pulls

the arm with the largest value of ucbi(t) = µ̂i(t− 1) + c
√

2 log t
Ti(t−1)

, where µ̂i(t− 1) is
the estimated mean parameter for the ith arm, Ti(t− 1) is the number of times the
ith arm has been pulled, and c is a tunable hyperparameter (Audibert and Munos,
2011). We initialize the statistics with exactly one success and one failure, which
corresponds to a Beta(1, 1) prior.

• Thompson sampling (TS) (Thompson, 1933): this is a simple method which, at
each time step, samples a list of arm means from the posterior distribution, and
choose the best arm according to this sample. It has been demonstrated to compare
favorably to UCB1 empirically (Chapelle and L. Li, 2011). We also experiment with
an optimistic variant (OTS) (May et al., 2012), which samples N times from the
posterior, and takes the one with the highest probability.

• ε-Greedy: in this strategy, the agent chooses the arm with the best empirical mean
with probability 1− ε, and chooses a random arm with probability ε. We use the
same initialization as UCB1.

• Greedy: this is a special case of ε-Greedy with ε = 0.
The Bayesian methods, Gittins index and Thompson sampling, take advantage of the

36



distribution ρM; and we provide these methods with the true distribution. For each
method with hyperparameters, we maximize the score with a separate grid search for
each of the experimental settings. The hyperparameters used for all algorithms are pro-
vided in the Appendix.

Table 9: MAB Results. Each grid cell records the total reward averaged over 1000 different in-
stances of the bandit problem. We consider k ∈ {5, 10, 50} bandits and n ∈ {10, 100, 500}
episodes of interaction. We highlight the best-performing algorithms in each setup ac-
cording to the computed mean, and we also highlight the other algorithms in that row
whose performance is not significantly different from the best one (determined by a one-
sided t-test with p = 0.05). For dynamic programming, the solver runs out of memory
for n > 100 after running for over 8 hours.

Setup Random DP Gittins TS OTS UCB1 ε-Greedy Greedy RL2

n = 10,k = 5 5.0 6.7 6.6 5.7 6.5 6.7 6.6 6.6 6.7

n = 10,k = 10 5.0 6.7 6.6 5.5 6.2 6.7 6.6 6.6 6.7

n = 10,k = 50 5.1 6.7 6.5 5.2 5.5 6.6 6.5 6.5 6.8

n = 100,k = 5 49.9 n/a 78.3 74.7 77.9 78.0 75.4 74.8 78.7

n = 100,k = 10 49.9 n/a 82.8 76.7 81.4 82.4 77.4 77.1 83.5

n = 100,k = 50 49.8 n/a 85.2 64.5 67.7 84.3 78.3 78.0 84.9

n = 500,k = 5 249.8 n/a 405.8 402.0 406.7 405.8 388.2 380.6 401.6

n = 500,k = 10 249.0 n/a 437.8 429.5 438.9 437.1 408.0 395.0 432.5

n = 500,k = 50 249.6 n/a 463.7 427.2 437.6 457.6 413.6 402.8 438.9
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Figure 6: RL2 learning curves for multi-armed bandits. Performance is normalized such that
Gittins index scores 1, and random policy scores 0.
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The results are summarized in Table 9, and the learning curves are shown in Fig. 6.
We observe that our approach achieves performance that is almost as good as the the
reference methods, which were (human) designed specifically to perform well on multi-
armed bandit problems. It is worth noting that the published algorithms are mostly
designed to minimize asymptotic regret (rather than finite horizon regret), hence there
tends to be a little bit of room to outperform them in the finite horizon settings.

Ablation study: We observe that there is a noticeable gap between Gittins index and
RL2 in the most challenging scenario. This raises the question whether better architec-
tures or better (slow) RL algorithms should be explored. To determine the bottleneck, we
trained the same architecture using supervised learning, using the trajectories generated
by the Gittins index approach as training data. We found that the fast learner, when
executed in test domains, achieved the same level of performance as the Gittins index
approach, suggesting that there is room for improvement by using better RL algorithms.
Further analysis on the bandit tasks is available in the Appendix.

3.3.2 Tabular MDPs

The bandit problem provides a natural and simple setting to investigate whether the
fast learner learns to trade off between exploration and exploitation. However, the prob-
lem itself involves no sequential decision making, and does not fully characterize the
challenges in solving MDPs. Hence, we perform further experiments using randomly
generated tabular MDPs, where there is a finite number of possible states and actions—
small enough that the transition probability distribution can be explicitly given as a table.
We compare our approach with the following methods:

• Random: the agent chooses an action uniformly at random for each time step;
• PSRL (Strens, 2000; Osband et al., 2013): it generalizes Thompson sampling to

MDPs, where at the beginning of each episode, we sample an MDP from the pos-
terior distribution, and take actions according to the optimal policy for the entire
episode. Similarly, we include an optimistic variant (OPSRL), which has also been
explored in Osband and Van Roy (2017).

• BEB (Kolter and A. Y. Ng, 2009): this is a model-based optimistic algorithm that
adds an exploration bonus to (thus far) infrequently visited states and actions.

• UCRL2 (Jaksch et al., 2010): this algorithm computes, at each iteration, the optimal
policy against an optimistic MDP under the current belief, using an extended value
iteration procedure.

• ε-Greedy: this algorithm takes actions optimal against the MAP estimate according
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to the current posterior, which is updated once per episode.
• Greedy: a special case of ε-Greedy with ε = 0.

Table 10: Random MDP Results

Setup Random PSRL OPSRL UCRL2 BEB ε-Greedy Greedy RL2

n = 10 100.1 138.1 144.1 146.6 150.2 132.8 134.8 156.2
n = 25 250.2 408.8 425.2 424.1 427.8 377.3 368.8 445.7
n = 50 499.7 904.4 930.7 918.9 917.8 823.3 769.3 936.1
n = 75 749.9 1417.1 1449.2 1427.6 1422.6 1293.9 1172.9 1428.8
n = 100 999.4 1939.5 1973.9 1942.1 1935.1 1778.2 1578.5 1913.7

The distribution over MDPs is constructed with |S| = 10, |A| = 5. The rewards fol-
low a Gaussian distribution with unit variance, and the mean parameters are sampled
independently from Normal(1, 1). The transitions are sampled from a flat Dirichlet dis-
tribution. This construction matches the commonly used prior in Bayesian RL methods.
We set the horizon for each episode to be T = 10, and an episode always starts on the
first state.
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Figure 7: RL2 learning curves for tabular MDPs. Performance is normalized such that OPSRL
scores 1, and random policy scores 0.

The results are summarized in Table 10, and the learning curves are shown in Fig. 7.
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We follow the same evaluation procedure as in the bandit case. We experiment with
n ∈ {10, 25, 50, 75, 100}. For fewer episodes, our approach surprisingly outperforms ex-
isting methods by a large margin. The advantage is reversed as n increases, suggesting
that the reinforcement learning problem in the outer loop becomes more challenging to
solve. We think that the advantage for small n comes from the need for more aggressive
exploitation: since there are 140 degrees of freedom to estimate in order to characterize
the MDP, and by the 10th episode, we will not have enough samples to form a good
estimate of the entire dynamics. By directly optimizing the RNN in this setting, our
approach should be able to cope with this shortage of samples, and decides to exploit
sooner compared to the reference algorithms.

3.3.3 Visual Navigation

The previous two tasks both only involve very low-dimensional state spaces. To evaluate
the feasibility of scaling up RL2, we further experiment with a challenging vision-based
task, where the agent is asked to navigate a randomly generated maze to find a randomly
placed target. The agent receives a 30×40 RGB image of the current field of view, and the
actions consist of {Turn 5◦ left, turn 5◦ right, move 10cm forward}. The agent receives a +1

reward when it reaches the target, −0.001 when it hits the wall, and −0.04 per time step
to encourage it to reach targets faster. It can interact with the maze for multiple episodes,
during which the maze structure and target position are held fixed. The optimal strategy
is to explore the maze efficiently during the first episode, and after locating the target,
act optimally against the current maze and target based on the collected information. An
illustration of the task is given in Fig. 8.
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(a) Sample observation (b) Layout of a 5x5 maze (c) Layout of a 9x9 maze

Figure 8: Visual navigation. The target block is shown in red, and occupies an entire grid in the
maze layout.

(a) Good (1st) (b) Good (2nd) (c) Bad (1st) (d) Bad (2nd)

Figure 9: Visualization of the agent’s behavior. In each scenario, the agent starts at the center of
the blue block, and the goal is to reach anywhere in the red block.

Visual navigation alone is a challenging task for reinforcement learning. The agent
only receives very sparse rewards during training, and does not have the primitives for
efficient exploration at the beginning of training. It also needs to make efficient use of
memory to decide how it should explore the space, without forgetting about where it
has already explored. Previously, Oh et al. (2016) have studied similar vision-based navi-
gation tasks in Minecraft. However, they use higher-level actions for efficient navigation.
Similar high-level actions in our task would each require around 5 low-level actions
combined in the right way. In contrast, our RL2 agent needs to learn these higher-level
actions from scratch.

We use a simple training setup, where we use small mazes of size 5×5, with 2 episodes
of interaction, each with horizon up to 250. Here the size of the maze is measured by
the number of grid cells along each wall in a discrete representation of the maze. During
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each trial, we sample 1 out of 1000 randomly generated configurations of map layout and
target positions. During testing, we evaluate on 1000 separately generated configurations.
In addition, we also study its extrapolation behavior along two axes, by (1) testing on
large mazes of size 9× 9 (see Fig. 8c) and (2) running the agent for up to 5 episodes in
both small and large mazes. For the large maze, we also increase the horizon per episode
by 4x due to the increased size of the maze.

Table 11: Results for visual navigation. In 12c, we measure the proportion of mazes where the
trajectory length in the second episode does not exceed the trajectory length in the first
episode.

(a) Avg. length of successful trajectories

Episode Small Large

1 52.4± 1.3 180.1± 6.0
2 39.1± 0.9 151.8± 5.9
3 42.6± 1.0 169.3± 6.3
4 43.5± 1.1 162.3± 6.4
5 43.9± 1.1 169.3± 6.5

(b) %Success

Episode Small Large

1 99.3% 97.1%
2 99.6% 96.7%
3 99.7% 95.8%
4 99.4% 95.6%
5 99.6% 96.1%

(c) %Improved

Small Large

91.7% 71.4%

The results are summarized in Table 11, and the learning curves are shown in Fig. 10.
We observe that there is a significant reduction in trajectory lengths between the first two
episodes in both the smaller and larger mazes, suggesting that the agent has learned
how to use information from past episodes. It also achieves reasonable extrapolation
behavior in further episodes by maintaining its performance, although there is a small
drop in the rate of success in the larger mazes. We also observe that on larger mazes, the
ratio of improved trajectories is lower, likely because the agent has not learned how to
act optimally in the larger mazes.

Still, even on the small mazes, the agent does not learn to perfectly reuse prior infor-
mation. An illustration of the agent’s behavior is shown in Fig. 9. The intended behavior,
which occurs most frequently, as shown in 9a and 9b, is that the agent should remem-
ber the target’s location, and utilize it to act optimally in the second episode. However,
occasionally the agent forgets about where the target was, and continues to explore in
the second episode, as shown in 9c and 9d. We believe that better reinforcement learning
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Figure 10: RL2 learning curves for visual navigation. Each curve shows a different random initial-
ization of the RNN weights. Performance varies greatly across different initializations.

techniques used as the outer-loop algorithm will improve these results in the future.

3.3.4 Comparison with MAML

We evaluate RL2 and MAML on the following tasks:
• Controlling a 2D point robot to navigate to a random goal;
• Controlling a planar cheetah robot to run forward at various speeds;
• Controlling a planar cheetah robot to either run forward or backward as fast as

possible.
• Controlling a quadruped robot (ant) to run forward at various speeds;
• Controlling a quadruped robot (ant) to either run forward or backward.

Figure 11: Comparison between RL2 and MAML.

Results are shown in Fig. 11. We find that RL2 significantly outperforms MAML. While
MAML may require 40 or more rollouts to learn the task, RL2 only needs 1. This sug-
gests that the tasks in Finn et al. (2017a) are somewhat simplistic: since the reward signal
is dense and conveys enough information about the task, the fast algorithm learned by
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RL2 can infer the task after a single time step, and achieves optimal performance immedi-
ately (i.e. as soon as the beginning of the very first rollout). In contrast, MAML requires
many rollouts. It is worth noting that the tasks investigated in the main body of our
paper require much richer behaviors, including balancing exploration and exploitation,
performing credit assignment, and emergence of hierarchical skills.

We also note that the final performance achieved by RL2 is better than what MAML
achieves. We want to emphasize that the MAML results shown are the exact numbers
from Finn et al. (2017a), and we used the exact same environments. There are a few
possible explanations for MAML not achieving the same final performance: (i) MAML
simply needs more iterations than were considered in the original MAML paper; this
wouldn’t be too surprising as vanilla policy gradients are known to not be the most
sample-efficient RL algorithms, and MAML is ultimately relying on policy gradients for
the adaptation (and trying to seek an initial policy from which policy gradients can be
maximally effective, which simply still might not be as effective as other algorithms,
including the adaptation mechanism RL2 discovers); (ii) Related, it could be that MAML
needs more meta-training to find a better initialization; (iii) Finally, it’s worth noting that
the earlier saturation of the MAML learning curves might relate to it not being as able
to manage the exploration / exploitation trade-off, and reducing variance too quickly.

3.4 related work

The concept of using prior experience to speed up reinforcement learning algorithms has
been explored in the past in various forms. Earlier studies have investigated automatic
tuning of hyper-parameters, such as learning rate and temperature (Ishii et al., 2002;
Schweighofer and Doya, 2003), as a form of meta-learning. A. Wilson et al. (2007) use
hierarchical Bayesian methods to maintain a posterior over possible models of dynamics,
and apply optimistic Thompson sampling according to the posterior. Many works in
hierarchical reinforcement learning propose to extract reusable skills from previous tasks
to speed up exploration in new tasks (S. P. Singh, 1992; Perkins, Precup, et al., 1999). We
refer the reader to Taylor and Stone (2009) for a more thorough survey on the multi-task
and transfer learning aspects.

The formulation of searching for a best-performing algorithm, whose performance is
averaged over a given distribution over MDPs, have been investigated in the past in more
limited forms (Maes et al., 2011; Castronovo et al., 2012). There, they propose to learn an
algorithm to solve multi-armed bandits using program search, where the search space
consists of simple formulas composed from hand-specified primitives, which needs to
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be tuned for each specific distribution over MDPs. In comparison, our approach allows
for entirely end-to-end training without requiring such domain knowledge.

More recently, Fu et al. (2015) propose a model-based approach on top of iLQG with
unknown dynamics (Levine and Abbeel, 2014), which uses samples collected from pre-
vious tasks to build a neural network prior for the dynamics, and can perform one-shot
learning on new, but related tasks thanks to reduced sample complexity. There has been
a growing interest in using deep neural networks for multi-task learning and transfer
learning (Parisotto et al., 2015; Rusu et al., 2015; Rusu et al., 2016a; C. Devin et al., 2016;
Rusu et al., 2016b).

In the broader context of machine learning, there has been a lot of interest in one-shot
learning for object classification (Vilalta and Drissi, 2002; Fei-Fei et al., 2006; Larochelle
et al., 2008; Lake et al., 2011; Koch, 2015). Our work draws inspiration from a particu-
lar line of work (Younger et al., 2001; Santoro et al., 2016; Vinyals et al., 2016a), which
formulates meta-learning as an optimization problem, and can thus be optimized end-
to-end via gradient descent. While these work applies to the supervised learning setting,
our work applies in the more general reinforcement learning setting. The reinforcement
learning setting requires a richer concept to be learned: our agent must not only learn to
exploit existing information, but also learn to explore, a problem that is usually not a fac-
tor in supervised learning. Another line of work (Hochreiter et al., 2001; Younger et al.,
2001; Andrychowicz et al., 2016; K. Li and Malik, 2016) studies meta-learning over the
optimization process. There, the meta-learner makes explicit updates to a parametrized
model. In comparison, we do not use a directly parametrized policy; instead, the recur-
rent neural network agent acts as the meta-learner and the resulting policy simultane-
ously.

Our formulation essentially constructs a partially observable MDP (POMDP) which
is solved in the outer loop, where the underlying MDP is unobserved by the agent.
This reduction of an unknown MDP to a POMDP can be traced back to dual control
theory (Feldbaum, 1960), where “dual” refers to the fact that one is controlling both the
state and the state estimate. Feldbaum pointed out that the solution can in principle be
computed with dynamic programming, but doing so is usually impractical. POMDPs
with such structure have also been studied under the name “mixed observability MDPs”
(Ong et al., 2010). However, the method proposed there suffers from the usual challenges
of solving POMDPs in high dimensions.

Apart from the various multiple-episode tasks we investigate in this chapter, previous
literature on training RNN policies have used similar tasks that require memory to test
if long-term dependency can be learned. Recent examples include the Labyrinth (Mnih
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et al., 2016) and the water maze experiment (Heess et al., 2015a). These tasks can be rein-
terpreted under the RL2 framework as instances of meta-learning. However, these works
did not identify the shared structure among the tasks, and study them in isolation. In
comparison, we propose a common framework that brings these different tasks together.

Simultaneous to our work, J. X. Wang et al. (2016) have independently proposed and
studied a similar meta-learning setting. The two studies are nicely complementary, in the
sense that their work provides insightful connections between meta-learning and neuro-
science, whereas our work contributes more depth towards understanding the strength
and limitations of such an implementation of meta-learning for RL.

3.5 discussion

This chapter suggests a different approach for designing better reinforcement learning
algorithms: instead of acting as the designers ourselves, learn the algorithm end-to-end
using standard reinforcement learning techniques. That is, the “fast” RL algorithm is
a computation whose state is stored in the RNN activations, and the RNN’s weights
are learned by a general-purpose “slow” reinforcement learning algorithm. Our method,
RL2, has demonstrated competence comparable with theoretically optimal algorithms in
small-scale settings. We have further shown its potential to scale to high-dimensional
tasks.

In the experiments, we have identified opportunities to improve upon RL2: the outer-
loop reinforcement learning algorithm was shown to be an immediate bottleneck, and
we believe that for settings with extremely long horizons, better architecture may also be
required for the fast learner. Although we have used generic methods and architectures
for the outer-loop algorithm and the fast learner, doing this also ignores the underly-
ing episodic structure. We expect algorithms and architectures that exploit the problem
structure to significantly boost the performance.

3.6 detailed experiment setup

Common to all experiments: as mentioned in the Experiment section, we use placeholder
values when necessary. For example, at t = 0 there is no previous action, reward, or
termination flag. Since all of our experiments use discrete actions, we use the embedding
of the action 0 as a placeholder for actions, and 0 for both the rewards and termination
flags. To form the input to the GRU, we use the values for the rewards and termination
flags as-is, and embed the states and actions as described separately below for each
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experiments. These values are then concatenated together to form the joint embedding.
For the neural network architecture, We use rectified linear units throughout the ex-

periments as the hidden activation, and we apply weight normalization without data-
dependent initialization (Salimans and D. P. Kingma, 2016) to all weight matrices. The
hidden-to-hidden weight matrix uses an orthogonal initialization (Saxe et al., 2013), and
all other weight matrices use Xavier initialization (Glorot and Y. Bengio, 2010). We ini-
tialize all bias vectors to 0. Unless otherwise mentioned, the policy and the baseline
uses separate neural networks with the same architecture until the final layer, where the
number of outputs differ.

All experiments are implemented using TensorFlow (Abadi et al., 2016) and rllab (Y.
Duan et al., 2016a). We use the implementations of classic algorithms provided by the
TabulaRL package (Osband, 2016).

3.6.1 Multi-armed bandits

The parameters for TRPO are shown in Table 13. Since the environment is stateless,
we use a constant embedding 0 as a placeholder in place of the states, and a one-hot
embedding for the actions.

Table 13: Hyperparameters for TRPO: multi-armed bandits

Discount 0.99
GAE λ 0.3
Policy Iters Up to 1000
#GRU Units 256

Mean KL 0.01
Batch size 250000

3.6.2 Tabular MDPs

The parameters for TRPO are shown in Table 14. We use a one-hot embedding for the
states and actions separately, which are then concatenated together.
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Table 14: Hyperparameters for TRPO: tabular MDPs

Discount 0.99
GAE λ 0.3
Policy Iters Up to 10000
#GRU Units 256

Mean KL 0.01
Batch size 250000

3.6.3 Visual Navigation

The parameters for TRPO are shown in Table 15. For this task, we use a neural network
to form the joint embedding. We rescale the images to have width 40 and height 30
with RGB channels preserved, and we recenter the RGB values to lie within range [−1, 1].
Then, this preprocessed image is passed through 2 convolution layers, each with 16

filters of size 5× 5 and stride 2. The action is first embedded into a 256-dimensional
vector where the embedding is learned, and then concatenated with the flattened output
of the final convolution layer. The joint vector is then fed to a fully connected layer with
256 hidden units.

Unlike previous experiments, we let the policy and the baseline share the same neu-
ral network. We found this to improve the stability of training baselines and also the
end performance of the policy, possibly due to regularization effects and better learned
features imposed by weight sharing. Similar weight-sharing techniques have also been
explored in Mnih et al. (2016).

Table 15: Hyperparameters for TRPO: visual navigation

Discount 0.99
GAE λ 0.99
Policy Iters Up to 5000
#GRU Units 256

Mean KL 0.01
Batch size 50000
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3.7 hyperparameters for baseline algorithms

3.7.1 Multi-armed bandits

There are 3 algorithms with hyperparameters: UCB1, Optimistic Thompson Sampling
(OTS), and ε-Greedy. We perform a coarse grid search to find the best hyperparameter
for each of them. More specifically:

• UCB1: We test c ∈ {0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. The best found pa-
rameter for each setting is given in Table 16.

Table 16: Best hyperparameter for UCB1

Setting Best c

n = 10,k = 5 0.1
n = 10,k = 10 0.1
n = 10,k = 50 0.1
n = 100,k = 5 0.2
n = 100,k = 10 0.2
n = 100,k = 50 0.2
n = 500,k = 5 0.2
n = 500,k = 10 0.2
n = 500,k = 50 0.2

• Optimistic Thompson Sampling (OTS): The hyperparameter is the number of
posterior samples. We use up to 20 samples. The best found parameter for each
setting is given in Table 17.
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Table 17: Best hyperparameter for OTS

Setting Best #samples

n = 10,k = 5 15

n = 10,k = 10 14

n = 10,k = 50 19

n = 100,k = 5 8

n = 100,k = 10 20

n = 100,k = 50 16

n = 500,k = 5 7

n = 500,k = 10 20

n = 500,k = 50 20

• ε-Greedy: The hyperparameter is the ε parameter. We test ε ∈ {0, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. The best found parameter for each setting is given in Ta-
ble 18.

Table 18: Best hyperparameter for ε-Greedy

Setting Best ε

n = 10,k = 5 0.0
n = 10,k = 10 0.0
n = 10,k = 50 0.0
n = 100,k = 5 0.0
n = 100,k = 10 0.0
n = 100,k = 50 0.1
n = 500,k = 5 0.1
n = 500,k = 10 0.1
n = 500,k = 50 0.1
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3.7.2 Tabular MDPs

There are 4 algorithms with hyperparameters: Optimistic PSRL (OPSRL), BEB, ε-Greedy,
UCRL2. Details are given below.

• Optimistic PSRL (OPSRL): The hyperparameter is the number of posterior sam-
ples. We use up to 20 samples. The best found parameter for each setting is given
in Table 19.

Table 19: Best hyperparameter for OPSRL

Setting Best #samples

n = 10 14

n = 25 14

n = 50 14

n = 75 14

n = 100 17

• BEB: We search for the scaling factor in front of the exploration bonus, in the
log-linear span of [log(0.0001), log(1.0)] with 21 way points. The actual searched pa-
rameters are 0.0001, 0.000158, 0.000251, 0.000398, 0.000631, 0.001, 0.001585, 0.002512,
0.003981, 0.00631, 0.01, 0.015849, 0.025119, 0.039811, 0.063096, 0.1, 0.158489, 0.251189,
0.398107, 0.630957, 1.0. The best found parameter for each setting is given in Ta-
ble 20.

Table 20: Best hyperparameter for BEB

Setting Best scaling

n = 10 0.002512
n = 25 0.001585
n = 50 0.001585
n = 75 0.001585
n = 100 0.001585
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• ε-Greedy: We test ε ∈ {0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. The best found
parameter for each setting is given in Table 21.

Table 21: Best hyperparameter for ε-Greedy

Setting Best ε

n = 10 0.1
n = 25 0.1
n = 50 0.1
n = 75 0.1
n = 100 0.1

• UCRL2: We search for the scaling factor of exploration bonus among the same
values as BEB. The best found parameter for each setting is given in Table 22.

Table 22: Best hyperparameter for UCRL2

Setting Best scaling

n = 10 0.398107
n = 25 0.398107
n = 50 0.398107
n = 75 0.398107
n = 100 0.398107

3.8 further analysis on multi-armed bandits

In this section, we provide further analysis of the behavior of RL2 agent in comparison
with the baseline algorithms, on the multi-armed bandit task. Certain algorithms such
as UCB1 are designed not in the Bayesian context; instead they are tailored to be robust
in adversarial cases. To highlight this aspect, we evaluate the algorithms on a different
metric, namely the percentage of trials where the best arm is recovered. We treat the
best arm chosen by the policy to be the arm that has been pulled most often, and the
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ground truth best arm is the arm with the highest mean parameter. In addition, we split
the set of all possible bandit tasks into simpler and harder tasks, where the difficulty is
measured by the ε-gap between the mean parameter of the best arm and the second best
arm. We compare the percentage of recovering the best arm separately according to the
ε gap, as shown in Table 23.

Table 23: Percentage of tasks where the best arm is chosen most frequently, with k = 5 arms and
n = 500 episodes of interaction.

Setup Random Gittins TS OTS UCB1 UCB1∗ ε-Greedy Greedy RL2

ε ∈ [0, 0.01] 21.5% 51.1% 53.1% 52.8% 50.9% 56.5% 37.3% 38.3% 46.1%

ε ∈ [0.01, 0.05] 19.3% 59.5% 71.2% 67.4% 62.5% 76.3% 42.3% 41.3% 55.1%

ε ∈ [0.05, 0.1] 17.7% 71.2% 91.5% 84.0% 78.9% 94.6% 46.1% 45.7% 67.4%

ε ∈ [0.1, 0.3] 20.1% 92.7% 99.2% 95.3% 93.5% 99.9% 58.1% 58.4% 87.1%

ε ∈ [0.3, 0.5] 20.4% 99.6% 100.0% 99.5% 99.8% 100.0% 85.4% 84.6% 99.0%

Note that there are two columns associated with the UCB1 algorithm, where UCB1

(without “∗”) is evaluated with c = 0.2, the parameter that gives the best performance as
evaluated by the average total reward, and UCB1

∗ uses c = 1.0. Surprisingly, although
using c = 1.0 performs the best in terms of recovering the best arm, its performance is
significantly worse than using c = 0.2 when evaluated under the average total reward
(369.2± 2.2 vs. 405.8± 2.2). This also explains that although RL2 does not perform the
best according to this metric (which is totally expected, since it is not optimized un-
der this metric), it achieves comparable average total reward as other best-performing
methods.

3.9 additional baseline experiments

We performed comparison with two additional baselines:
• B1: Train RL2 agent as-is, but reset the hidden states after each episode, both in

training and testing;
• B2: Train RL2 agent on single episodes, and test it on multiple episodes without

resetting hidden state in-between.

53



The results are shown in Table 24, Table 25, Table 26, and Table 28. In summary, RL2

performs much better than B1, which in turn performs better than B2. These results can
be explained as follows:

• MAB: For these environments, a single episode corresponds to a single pull of
arms, and B2 reduces to random guessing so it won’t do well. Yet surprisingly,
B1 performs much better than random. This is because the policy observes the
last action taken and the last reward, and it effectively has a single-step memory,
which can be exploited (for instance, if the last pull resulted in a reward of 1, it
makes sense to pull that arm again). However, such single-step memory is still
very limited, and this baseline performs much worse than RL² as the number of
episodes increases.

• Tabular MDP: B2 does slightly better than random by exploiting reward infor-
mation in a single episode. The relative advantage of B1 compared to B2 is less
significant here, since single-step memory is not as informative when each episode
spans over multiple steps. RL² still outperforms these baselines significantly.

• Maze: RL2 significantly outperforms both baselines. Interestingly, even in this case
B1 can still slightly make use of its single-step memory, though it is much less ef-
fective than explicitly preserving hidden states. B2 is completely unable of making
use of previous episodes.

Table 24: Multi-Armed Bandits

Setup Random Gittins TS OTS UCB1 ε-Greedy Greedy RL2 B1 B2

n = 10,k = 5 5.0 6.6 5.7 6.5 6.7 6.6 6.6 6.7 6.4 4.9

n = 10,k = 10 5.0 6.6 5.5 6.2 6.7 6.6 6.6 6.7 6.6 5.1

n = 10,k = 50 5.1 6.5 5.2 5.5 6.6 6.5 6.5 6.8 6.6 5.2

n = 100,k = 5 49.9 78.3 74.7 77.9 78.0 75.4 74.8 78.7 68.7 50.4

n = 100,k = 10 49.9 82.8 76.7 81.4 82.4 77.4 77.1 83.5 72.7 48.4

n = 100,k = 50 49.8 85.2 64.5 67.7 84.3 78.3 78.0 84.9 78.0 49.2

n = 500,k = 5 249.8 405.8 402.0 406.7 405.8 388.2 380.6 401.6 340.6 251.9

n = 500,k = 10 249.0 437.8 429.5 438.9 437.1 408.0 395.0 432.5 371.0 249.2

n = 500,k = 50 249.6 463.7 427.2 437.6 457.6 413.6 402.8 438.9 384.1 248.5

54



Table 25: Random MDPs

Setup Random PSRL OPSRL UCRL2 BEB ε-Greedy Greedy RL2 B1 B2

n = 10 100.1 138.1 144.1 146.6 150.2 132.8 134.8 156.2 123.1 111.6

n = 25 250.2 408.8 425.2 424.1 427.8 377.3 368.8 445.7 316.4 278.3

n = 50 499.7 904.4 930.7 918.9 917.8 823.3 769.3 936.1 646.9 557.8

n = 75 749.9 1417.1 1449.2 1427.6 1422.6 1293.9 1172.9 1428.8 975.6 832.0

n = 100 999.4 1939.5 1973.9 1942.1 1935.1 1778.2 1578.5 1913.7 1306.2 1114.8

Table 26: Visual navigation (small mazes)

Ep. RL2 B1 B2

1 52.4 51.2 49.4

2 39.1 47.0 51.1

3 42.6 50.4 50.3

4 43.5 50.1 51.0

5 43.9 49.8 50.6

(a) Average length of successful
trajectories

Ep. RL2 B1 B2

1 99.3% 99.1% 98.4%

2 99.6% 99.3% 99.1%

3 99.7% 99.4% 99.6%

4 99.4% 99.6% 99.4%

5 99.6% 99.4% 99.2%

(b) %Success

RL2 B1 B2

91.7% 85.0% 82.9%

(c) %Improved

Table 28: Visual navigation (test out-of-distribution generalization on large mazes)

Ep. RL2 B1 B2

1 180.1 189.8 190.4

2 151.8 172.2 191.4

3 169.3 176.2 190.2

4 162.3 184.3 193.8

5 169.3 175.6 191.5

(a) Average length of successful
trajectories

Ep. RL2 B1 B2

1 97.1% 96.3% 95.9%

2 96.7% 96.8% 94.6%

3 95.8% 96.6% 96.2%

4 95.6% 96.2% 95.5%

5 96.1% 96.9% 95.5%

(b) %Success

RL2 B1 B2

71.4% 69.3% 63.3%

(c) %Improved
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4
O N E - S H O T I M I TAT I O N L E A R N I N G

4.1 overview

We are interested in robotic systems that are able to perform a variety of complex useful
tasks, e.g. tidying up a home or preparing a meal. The robot should be able to learn new
tasks without long system interaction time. To accomplish this, we must solve two broad
problems. The first problem is that of dexterity: robots should learn how to approach,
grasp and pick up complex objects, and how to place or arrange them into a desired
configuration. The second problem is that of communication: how to communicate the
intent of the task at hand, so that the robot can replicate it in a broader set of initial
conditions.

Demonstrations are an extremely convenient form of information we can use to teach
robots to overcome these two challenges. Using demonstrations, we can unambiguously
communicate essentially any manipulation task, and simultaneously provide clues about
the specific motor skills required to perform the task. We can compare this with an alter-
native form of communication, namely natural language. Although language is highly
versatile, effective, and efficient, natural language processing systems are not yet at a
level where we could easily use language to precisely describe a complex task to a robot.
Compared to language, using demonstrations has two fundamental advantages: first, it
does not require the knowledge of language, as it is possible to communicate complex
tasks to humans that don’t speak one’s language. And second, there are many tasks that
are extremely difficult to explain in words, even if we assume perfect linguistic abilities:
for example, explaining how to swim without demonstration and experience seems to
be, at the very least, an extremely challenging task.

Indeed, learning from demonstrations have had many successful applications. How-
ever, so far these applications have either required careful feature engineering, or a sig-
nificant amount of system interaction time. This is far from what what we desire: ideally,
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Figure 12: (a) Traditionally, policies are task-specific. For example, a policy might have been
trained through an imitation learning algorithm to stack blocks into towers of height
3, and then another policy would be trained to stack blocks into towers of height 2, etc.
(b) In this chapter, we are interested in training networks that are not specific to one
task, but rather can be told (through a single demonstration) what the current new
task is, and be successful at this new task. For example, when it is conditioned on a
single demonstration for task F, it should behave like a good policy for task F. (c) We
can phrase this as a supervised learning problem, where we train this network on a
set of training tasks, and with enough examples it should generalize to unseen, but
related tasks. To train this network, in each iteration we sample a demonstration from
one of the training tasks, and feed it to the network. Then, we sample another pair of
observation and action from a second demonstration of the same task. When condi-
tioned on both the first demonstration and this observation, the network is trained to
output the corresponding action.

we hope to demonstrate a certain task only once or a few times to the robot, and have it
instantly generalize to new situations of the same task, without long system interaction
time or domain knowledge about individual tasks.

In this chapter we explore the one-shot imitation learning setting illustrated in Fig. 12,
where the objective is to maximize the expected performance of the learned policy when
faced with a new, previously unseen, task, and having received as input only one demon-
stration of that task. For the tasks we consider, the policy is expected to achieve good
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performance without any additional system interaction, once it has received the demon-
stration.

We train a policy on a broad distribution over tasks, where the number of tasks is
potentially infinite. For each training task we assume the availability of a set of success-
ful demonstrations. Our learned policy takes as input: (i) the current observation, and
(ii) one demonstration that successfully solves a different instance of the same task (this
demonstration is fixed for the duration of the episode). The policy outputs the current
controls. We note that any pair of demonstrations for the same task provides a super-
vised training example for the neural net policy, where one demonstration is treated as
the input, while the other as the output.

To make this model work, we made essential use of soft attention (Bahdanau et al.,
2015) for processing both the (potentially long) sequence of states and action that corre-
spond to the demonstration, and for processing the components of the vector specifying
the locations of the various blocks in our environment. The use of soft attention over
both types of inputs made strong generalization possible. In particular, on a family of
block stacking tasks, our neural network policy was able to perform well on novel block
configurations which were not present in any training data. Videos of our experiments
are available at http://bit.ly/nips2017-oneshot.

4.2 method

4.2.1 Problem Formalization

We denote a distribution of tasks by T, an individual task by t ∼ T, and a distribution
of demonstrations for the task t by D(t). A policy is symbolized by πθ(a|o,d), where
a is an action, o is an observation, d is a demonstration, and θ are the parameters
of the policy. A demonstration d ∼ D(t) is a sequence of observations and actions :
d = [(o1,a1), (o2,a2), . . . , (oT ,aT )]. We assume that the distribution of tasks T is given,
and that we can obtain successful demonstrations for each task. We assume that there is
some scalar-valued evaluation function Rt(d) (e.g. a binary value indicating success) for
each task, although this is not required during training. The objective is to maximize the
expected performance of the policy, where the expectation is taken over tasks t ∈ T, and
demonstrations d ∈ D(t).
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4.2.2 Example Settings

To clarify the problem setting, we describe two concrete examples, which we will also
later study in the experiments.

4.2.2.1 Particle Reaching

The particle reaching problem is a very simple family of tasks. In each task, we control
a point robot to reach a specific landmark, and different tasks are identified by different
landmarks. As illustrated in Fig. 13, one task could be to reach the orange square, and
another task could be to reach the green triangle. The agent receives its own 2D location,
as well as the 2D locations of each of the landmarks. Within each task, the initial position
of the agent, as well as the positions of all the landmarks, can vary across different
instances of the task.

Without a demonstration, the robot does not know which landmark it should reach,
and will not be able to accomplish the task. Hence, this setting already gets at the essence
of one-shot imitation, namely to communicate the task via a demonstration. After learn-
ing, the agent should be able to identify the target landmark from the demonstration,
and reach the same landmark in a new instance of the task.

Figure 13: The robot is a point mass controlled with 2-dimensional force. The family of tasks is
to reach a target landmark. The identity of the landmark differs from task to task, and
the model has to figure out which target to pursue based on the demonstration. (left)
illustration of the robot; (middle) the task is to reach the orange box, (right) the task is
to reach the green triangle.

4.2.2.2 Block Stacking

We now consider a more challenging set of tasks, which requires more advanced manip-
ulation skills, and where different tasks share a compositional structure, which allows
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us to investigate nontrivial generalization to unseen tasks. In the block stacking tasks
family, the goal is to control a 7-DOF Fetch robotic arm (see Fig. 14 for a simulated
model of the robot) to stack various numbers of cube-shaped blocks into configurations
specified by the user. Each configuration consists of a list of blocks arranged into towers
of different heights, and can be identified by a string such as ghij or ab cd ef gh, as
illustrated in Fig. 15 and Fig. 16. Each of these configurations correspond to a different
task. In a typical task, an observation is a list of (x,y, z) object positions relative to the
gripper, and information if gripper is opened or closed. The number of objects may vary
across different task instances.

Figure 14: The tasks are to control a Fetch robotic arm to stack blocks into various layouts. This
figure shows an example of the initial state, where blocks are randomly placed on the
table.

Figure 15: An entire episode can take up to several thousand time-steps. We define a stage as a
single operation of stacking one block on top of another. This figure shows a trajectory
of stacking 4 towers of height 2 each, where block A is on top of block B, block C is
on top of block D, block E is on top of block F, and block G is on top of block H. This
task has 4 stages, and is identified as ab cd ef gh.

0 http://fetchrobotics.com/
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Figure 16: Trajectory of stacking 1 block tower of height 4, where block G is on top of block H,
block H is on top of block I, and block I is on top of block J. This task has 3 stages, and
is identified as ghij.

4.2.3 Algorithm

In order to train the neural network policy, we make use of imitation learning algo-
rithms such as behavioral cloning and DAGGER (Ross et al., 2011), which only require
demonstrations rather than reward functions to be specified. This has the potential to be
more scalable, since it is often easier to demonstrate a task than specifying a well-shaped
reward function (A. Y. Ng et al., 1999).

We start by collecting a set of demonstrations for each task, where we add noise
to the actions in order to have wider coverage in the trajectory space. In each training
iteration, we sample a list of tasks (with replacement). For each sampled task, we sample
a demonstration as well as a small batch of observation-action pairs. The policy is trained
to regress against the desired actions when conditioned on the current observation and
the demonstration, by minimizing an `2 or cross-entropy loss based on whether actions
are continuous or discrete. A high-level illustration of the training procedure is given in
Fig. 12(c). Across all experiments, we use Adamax (D. Kingma and Ba, 2014) to perform
the optimization with a learning rate of 0.001.

4.3 architecture

While, in principle, a generic neural network could learn the mapping from demonstra-
tion and current observation to appropriate action, we found it important to use an
appropriate architecture. Our architecture for learning block stacking is one of the main
contributions of this paper, and we believe it is representative of what architectures for
one-shot imitation learning of more complex tasks could look like in the future. Al-
though the particle task is simpler, we also found architectural decisions to be important,
and we consider several choices below to be evaluated in Section 4.4.1.
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4.3.1 Architecture for Particle Reaching

We consider three architectures for this problem:
• Plain LSTM: The first architecture is a simple LSTM (Hochreiter and Schmidhu-

ber, 1997) with 512 hidden units. It reads the demonstration trajectory, the output
of which is then concatenated with the current state, and fed to a multi-layer per-
ceptron (MLP) to produce the action.

• LSTM with attention: In this architecture, the LSTM outputs a weighting over
the different landmarks from the demonstration sequence. Then, it applies this
weighting in the test scene, and produces a weighted combination over landmark
positions given the current state. This 2D output is then concatenated with the
current agent position, and fed to an MLP to produce the action.

• Final state with attention: Rather than looking at the entire demonstration trajec-
tory, this architecture only looks at the final state in the demonstration (which is
already sufficient to communicate the task), and produce a weighting over land-
marks. It then proceeds like the previous architecture.

Notice that these three architectures are increasingly more specialized to the specific
particle reaching setting, which suggests a potential trade-off between expressiveness
and generalizability. We will quantify this tradeoff in Section 4.4.1.

4.3.2 Architecture for Block Stacking

For the block stacking task, it is desirable that the policy architecture has the following
properties:

1. It should be easy to apply to task instances that have varying number of blocks.
2. It should naturally generalize to different permutations of the same task. For in-

stance, the policy should perform well on task dcba, even if it is only trained on
task abcd.

3. It should accommodate demonstrations of variable lengths.
Our proposed architecture consists of three modules: the demonstration network, the

context network, and the manipulation network. An illustration of the architecture is
shown in Fig. 17. We will describe the main operations performed in each module below,
and a full specification is available in the Appendix.
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Figure 17: Illustration of the network architecture.

4.3.2.1 Demonstration Network

The demonstration network receives a demonstration trajectory as input, and produces
an embedding of the demonstration to be used by the policy. The size of this embedding
grows linearly as a function of the length of the demonstration as well as the number of
blocks in the environment.

Temporal Dropout: For block stacking, the demonstrations can span hundreds to thou-
sands of time steps, and training with such long sequences can be demanding in both
time and memory usage. Hence, we randomly discard a subset of time steps during train-
ing, an operation we call temporal dropout, analogous to (Srivastava et al., 2014; Krueger
et al., 2016). We denote p as the proportion of time steps that are thrown away. In our
experiments, we use p = 0.95, which reduces the length of demonstrations by a factor
of 20. During test time, we can sample multiple downsampled trajectories, use each of
them to compute downstream results, and average these results to produce an ensemble
estimate. In our experience, this consistently improves the performance of the policy.

Neighborhood Attention: After downsampling the demonstration, we apply a se-
quence of operations, composed of dilated temporal convolution (F. Yu and Koltun, 2016)
and neighborhood attention. We now describe this second operation in more detail.

Since our neural network needs to handle demonstrations with variable numbers of
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blocks, it must have modules that can process variable-dimensional inputs. Soft atten-
tion is a natural operation which maps variable-dimensional inputs to fixed-dimensional
outputs. However, by doing so, it may lose information compared to its input. This is
undesirable, since the amount of information contained in a demonstration grows as
the number of blocks increases. Therefore, we need an operation that can map variable-
dimensional inputs to outputs with comparable dimensions. Intuitively, rather than hav-
ing a single output as a result of attending to all inputs, we have as many outputs as
inputs, and have each output attending to all other inputs in relation to its own corre-
sponding input.

We start by describing the soft attention module as specified in (Bahdanau et al., 2015).
The input to the attention includes a query q, a list of context vectors {cj}, and a list of
memory vectors {mj}. The ith attention weight is given by wi ← vT tanh(q+ ci), where
v is a learned weight vector. The output of attention is a weighted combination of the
memory content, where the weights are given by a softmax operation over the attention
weights. Formally, we have output←

∑
imi

exp(wi)∑
j exp(wj)

. Note that the output has the same
dimension as a memory vector. The attention operation can be generalized to multiple
query heads, in which case there will be as many output vectors as there are queries.

Now we turn to neighborhood attention. We assume there are B blocks in the en-
vironment. We denote the robot’s state as srobot, and the coordinates of each block as
(x1,y1, z1), . . . , (xB,yB, zB). The input to neighborhood attention is a list of embeddings
hin1 , . . . ,hinB of the same dimension, which can be the result of a projection operation over
a list of block positions, or the output of a previous neighborhood attention operation.
Given this list of embeddings, we use two separate linear layers to compute a query vec-
tor and a context embedding for each block: qi ← Linear(hini ), and ci ← Linear(hini ). The
memory content to be extracted consists of the coordinates of each block, concatenated
with the input embedding. The ith query result is given by the following soft attention
operation: resulti ← SoftAttn(query: qi, context: {cj}Bj=1, memory: {((xj,yj, zj),hinj ))}Bj=1).

Intuitively, this operation allows each block to query other blocks in relation to itself
(e.g. find the closest block), and extract the queried information. The gathered results are
then combined with each block’s own information, to produce the output embedding
per block. Concretely, we have outputi ← Linear(concat(hini , resulti, (xi,yi, zi), srobot)). In
practice, we use multiple query heads per block, so that the size of each resulti will be
proportional to the number of query heads.

64



4.3.2.2 Context network

The context network is the crux of our model. It processes both the current state and the
embedding produced by the demonstration network, and outputs a context embedding,
whose dimension does not depend on the length of the demonstration, or the number of
blocks in the environment. Hence, it is forced to capture only the relevant information,
which will be used by the manipulation network.

Attention over demonstration: The context network starts by computing a query vec-
tor as a function of the current state, which is then used to attend over the different
time steps in the demonstration embedding. The attention weights over different blocks
within the same time step are summed together, to produce a single weight per time step.
The result of this temporal attention is a vector whose size is proportional to the num-
ber of blocks in the environment. We then apply neighborhood attention to propagate
the information across the embeddings of each block. This process is repeated multiple
times, where the state is advanced using an LSTM cell with untied weights.

Attention over current state: The previous operations produce an embedding whose
size is independent of the length of the demonstration, but still dependent on the number
of blocks. We then apply standard soft attention over the current state to produce fixed-
dimensional vectors, where the memory content only consists of positions of each block,
which, together with the robot’s state, forms the context embedding, which is then passed
to the manipulation network.

Intuitively, although the number of objects in the environment may vary, at each stage
of the manipulation operation, the number of relevant objects is small and usually fixed.
For the block stacking environment specifically, the robot should only need to pay atten-
tion to the position of the block it is trying to pick up (the source block), as well as the
position of the block it is trying to place on top of (the target block). Therefore, a properly
trained network can learn to match the current state with the corresponding stage in the
demonstration, and infer the identities of the source and target blocks expressed as soft
attention weights over different blocks, which are then used to extract the corresponding
positions to be passed to the manipulation network. Although we do not enforce this
interpretation in training, our experiment analysis supports this interpretation of how
the learned policy works internally.

4.3.2.3 Manipulation network

The manipulation network is the simplest component. After extracting the information of
the source and target blocks, it computes the action needed to complete the current stage
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of stacking one block on top of another one, using a simple MLP network.1 This division
of labor opens up the possibility of modular training: the manipulation network may be
trained to complete this simple procedure, without knowing about demonstrations or
more than two blocks present in the environment. We leave this possibility for future
work.

4.4 experiments

4.4.1 Particle Reaching

To demonstrate the key concepts that underlie the one-shot imitation learning frame-
work, we conduct experiments with the simple 2D particle reaching task described in
Section 4.2.2.1. We consider an increasingly difficult set of task families, where the num-
ber of landmarks increases from 2 to 10. For each task family, we collect 10000 trajectories
for training, where the positions of landmarks and the starting position of the point robot
are randomized. We use a hard-coded expert policy to efficiently generate demonstra-
tions. We add noise to the trajectories by perturbing the computed actions before apply-
ing them to the environment, and we use simple behavioral cloning to train the neural
network policy. The trained policy is evaluated on new scenarios and conditioned on
new demonstration trajectories unseen during training.

We evaluate the performance of the three architectures described in Section 4.3.1. For
the LSTM-based architectures, we apply dropout (Srivastava et al., 2014) to the fully
connected layers, by zeroing out activations with probability 0.1 during training.

4.4.1.1 Results

The results are shown in Fig. 18. We observe that as the architecture becomes more
specialized, we achieve much better generalization performance. For this simple task, it
appears that conditioning on the entire demonstration hurts generalization performance,
and conditioning on just the final state performs the best even without explicit regular-
ization. This makes intuitive sense, since the final state already sufficiently characterizes
the task at hand.

1 In principle, one can replace this module with an RNN module. But we did not find this necessary for the
tasks we consider.
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Figure 18: Success rates of different architectures for particle reaching. The “Train” curves show
the success rates when conditioned on demonstrations seen during training, and run-
ning the policy on initial conditions seen during training, while the “Test” curves
show the success rates when conditioned on new trajectories and operating in new sit-
uations. Both attention-based architectures achieve perfect training success rates, and
the curves are overlapped.

However, the same conclusion does not appear to hold as the task becomes more
complicated, as shown by the next set of experiments.

Fig. 19 shows the learning curves for the three architectures designed for the parti-
cle reaching tasks, as the number of landmarks is varied, by running the policies over
100 different configurations, and computing success rates over both training and test
data. We can clearly observe that both LSTM-based architectures exhibit overfitting as
the number of landmarks increases. On the other hand, using attention clearly improves
generalization performance, and when conditioning on only the final state, it achieves
perfect generalization in all scenarios. It is also interesting to observe that learning un-
dergoes a phase transition. Intuitively, this may be when the network is learning to infer
the task from the demonstration. Once this is finished, the learning of control policy is
almost trivial.
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(a) Plain LSTM (Train)
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(b) Plain LSTM (Test)
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(c) LSTM with attention (Train)
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(d) LSTM with attention (Test)
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(e) Final state with attention (Train)
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(f) Final state with attention (Test)

Figure 19: Learning curves for particle reaching tasks. Shown success rates are moving averages
of past 10 epochs for smoother curves. Each policy is trained for up to 1000 epochs,
which takes up to an hour using a Titan X Pascal GPU (as can be seen from the plot,
most experiments can be finished sooner).

Table 30 and Table 31 show the exact performance numbers for reference.

68



#Landmarks Plain LSTM LSTM with attention Final state with attention

2 100.0% 100.0% 100.0%
3 100.0% 100.0% 100.0%
4 100.0% 100.0% 100.0%
5 100.0% 100.0% 100.0%
6 99.0% 100.0% 100.0%
7 100.0% 100.0% 100.0%
8 100.0% 100.0% 100.0%
9 100.0% 100.0% 100.0%

10 91.9% 100.0% 100.0%

Table 30: Success rates of particle reaching conditioned on seen demonstrations, and running on
seen initial configurations.

#Landmarks Plain LSTM LSTM with attention Final state with attention

2 100.0% 100.0% 100.0%
3 100.0% 100.0% 100.0%
4 99.0% 100.0% 100.0%
5 98.0% 100.0% 100.0%
6 99.0% 100.0% 100.0%
7 98.0% 100.0% 100.0%
8 93.9% 99.0% 100.0%
9 83.8% 94.9% 100.0%

10 50.5% 85.9% 100.0%

Table 31: Success rates of particle reaching conditioned on unseen demonstrations, and running
on unseen initial configurations.
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4.4.2 Block Stacking

The particle reaching tasks nicely demonstrates the challenges in generalization in a
simplistic scenario. However, the tasks do not share a compositional structure, making
the evaluation of generalization to new tasks challenging. The skills and the information
content required for each individual task are also simple. Hence, we conduct further
experiments with the block stacking tasks described in Section 4.2.2.2. These experiments
are designed to answer the following questions:

• How does training with behavioral cloning compare with DAGGER?
• How does conditioning on the entire demonstration compare to conditioning on

the final state, even when it already has enough information to fully specify the
task?

• How does conditioning on the entire demonstration compare to conditioning on
a “snapshot” of the trajectory, which is a small subset of frames that are most
informative?

• Can our framework generalize to tasks that it has never seen during training?
• What are the current limitations of the method?

To answer these questions, we compare the performance of the following architectures:
• BC: We use the same architecture as previous, but and the policy using behavioral

cloning.
• DAGGER: We use the architecture described in the previous section, and train the

policy using DAGGER.
• Final state: This architecture conditions on the final state rather than on the entire

demonstration trajectory. For the block stacking task family, the final state uniquely
identifies the task, and there is no need for additional information. However, a full
trajectory, one which contains information about intermediate stages of the task’s
solution, can make it easier to train the optimal policy, because it could learn to
rely on the demonstration directly, without needing to memorize the intermediate
steps into its parameters. This is related to the way in which reward shaping can
significantly affect performance in reinforcement learning (A. Y. Ng et al., 1999).
A comparison between the two conditioning strategies will tell us whether this
hypothesis is valid. We train this policy using DAGGER.

• Snapshot: This architecture conditions on a “snapshot” of the trajectory, which
includes the last frame of each stage along the demonstration trajectory. This as-
sumes that a segmentation of the demonstration into multiple stages is available
at test time, which gives it an unfair advantage compared to the other condition-
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ing strategies. Hence, it may perform better than conditioning on the full trajectory,
and serves as a reference, to inform us whether the policy conditioned on the entire
trajectory can perform as well as if the demonstration is clearly segmented. Again,
we train this policy using DAGGER.

We evaluate the policy on tasks seen during training, as well as tasks unseen during
training. Note that generalization is evaluated at multiple levels: the learned policy not
only needs to generalize to new configurations and new demonstrations of tasks seen
already, but also needs to generalize to new tasks. We also perform a thorough break-
down analysis of the failure scenarios as the difficulty of the task varies. Videos of our
experiments are available at http://bit.ly/one-shot-imitation.

Concretely, we collect 140 training tasks, and 43 test tasks, each with a different desired
layout of the blocks. The number of blocks in each task can vary between 2 and 10. We
collect 1000 trajectories per task for training, and maintain a separate set of trajectories
and initial configurations to be used for evaluation. The trajectories are collected using a
hard-coded policy.

4.4.2.1 Performance Evaluation
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(b) Performance on test tasks.

Figure 20: Comparison of different conditioning strategies. The darkest bar shows the perfor-
mance of the hard-coded policy, which unsurprisingly performs the best most of the
time. For architectures that use temporal dropout, we use an ensemble of 10 differ-
ent downsampled demonstrations and average the action distributions. Then for all
architectures we use the greedy action for evaluation.

Fig. 20 shows the performance of various architectures. Results for training and test tasks
are presented separately, where we group tasks by the number of stages required to com-
plete them. This is because tasks that require more stages to complete are typically more

71

http://bit.ly/one-shot-imitation


challenging. In fact, even our scripted policy frequently fails on the hardest tasks. We
measure success rate per task by executing the greedy policy (taking the most confident
action at every time step) in 100 different configurations, each conditioned on a different
demonstration unseen during training. We report the average success rate over all tasks
within the same group.

From the figure, we can observe that for the easier tasks with fewer stages, all of the
different conditioning strategies perform equally well and almost perfectly. As the dif-
ficulty (number of stages) increases, however, conditioning on the entire demonstration
starts to outperform conditioning on the final state. One possible explanation is that
when conditioned only on the final state, the policy may struggle about which block it
should stack first, a piece of information that is readily accessible from demonstration,
which not only communicates the task, but also provides valuable information to help
accomplish it.

More surprisingly, conditioning on the entire demonstration also seems to outperform
conditioning on the snapshot, which we originally expected to perform the best. We
suspect that this is due to the regularization effect introduced by temporal dropout,
which effectively augments the set of demonstrations seen by the policy during training.

Another interesting finding was that training with behavioral cloning has the same
level of performance as training with DAGGER, which suggests that the entire train-
ing procedure could work without requiring interactive supervision. In our preliminary
experiments, we found that injecting noise into the trajectory collection process was im-
portant for behavioral cloning to work well, hence in all experiments reported here we
use noise injection. In practice, such noise can come from natural human-induced noise
through tele-operation, or by artificially injecting additional noise before applying it on
the physical robot.

4.4.2.2 Evaluating Permutation Invariance

During training and in the previous evaluations, we only select one task per equivalence
class, where two tasks are considered equivalent if they are the same up to permuting
different blocks. This is based on the assumption that our architecture is invariant to
permutations among different blocks. For example, if the policy is only trained on the
task abcd, it should perform well on task dcba, given a single demonstration of the
task dcba. We now experimentally verify this property by fixing a training task, and
evaluating the policy’s performance under all equivalent permutations of it. As Fig. 21

shows, although the policy has only seen the task abcd, it achieves the same level of
performance on all other equivalent tasks.
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Figure 21: Performance of policy on a set of tasks equivalent up to permutations.

4.4.2.3 Effect of Ensembling

We now evaluate the importance of sampling multiple downsampled demonstrations
during evaluation, which was introduced in Section 4.3.2.1. Fig. 22 shows the perfor-
mance across all training and test tasks, as the number of ensembles varies from 1 to
20. We observe that more ensembles helps the most for tasks with fewer stages. On the
other hand, it consistently improves performance for the harder tasks, although the gap
is smaller. We suspect that this is because the policy has learned to attend to frames
in the demonstration trajectory where the blocks are already stacked together. In tasks
with only 1 stage, for example, it is very easy for these frames to be dropped in a single
downsampled demonstration. On the other hand, in tasks with more stages, it becomes
more resilient to missing frames. Using more than 10 ensembles appears to provide no
significant improvements, and hence we used 10 ensembles in our main evaluation.
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Figure 22: Performance of various number of ensembles.

4.4.2.4 Breakdown of Failure Cases

To understand the limitations of the current approach, we perform a breakdown analysis
of the failure cases. We consider three failure scenarios: “Wrong move” means that the
policy has arranged a layout incompatible with the desired layout. This could be because
the policy has misinterpreted the demonstration, or due to an accidental bad move that
happens to scramble the blocks into the wrong layout. “Manipulation failure” means that
the policy has made an irrecoverable failure, for example if the block is shaken off the
table, which the current hard-coded policy does not know how to handle. “Recoverable
failure” means that the policy runs out of time before finishing the task, which may be
due to an accidental failure during the operation that would have been recoverable given
more time. As shown in Fig. 23, conditioning on only the final state makes more wrong
moves compared to other architectures. Apart from that, most of the failure cases are
actually due to manipulation failures that are mostly irrecoverable.2 This suggests that

2 Note that the actual ratio of misinterpreted demonstrations may be different, since the runs that have
caused a manipulation failure could later lead to a wrong move, were it successfully executed. On the
other hand, by visually inspecting the videos, we observed that most of the trajectories categorized as
“Wrong Move” are actually due to manipulation failures (except for policy conditioning on the final state,
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better manipulation skills need to be acquired to make the learned one-shot policy more
reliable.

Figure 23: Breakdown of the success and failure scenarios. The area that each color occupies
represent the ratio of the corresponding scenario.

4.4.2.5 Visualization

We visualize the attention mechanisms underlying the main policy architecture to have
a better understanding about how it operates. There are two kinds of attention we are
mainly interested in, one where the policy attends to different time steps in the demon-
stration, and the other where the policy attends to different blocks in the current state.
Fig. 24 shows some of the attention heatmaps.

which does seem to occasionally execute an actual wrong move).
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(a) Attention over blocks in the current state.

(b) Attention over downsampled demonstration.

Figure 24: Visualizing attentions performed by the policy during an entire execution. The task
being performed is ab cde fg hij. Note that the policy has multiple query heads for
each type of attention, and only one query head per type is visualized. (a) We can
observe that the policy almost always focuses on a small subset of the block positions
in the current state, which allows the manipulation network to generalize to operations
over different blocks. (b) We can observe a sparse pattern of time steps that have high
attention weights. This suggests that the policy has essentially learned to segment the
demonstrations, and only attend to important key frames. Note that there are roughly
6 regions of high attention weights, which nicely corresponds to the 6 stages required
to complete the task.
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4.4.2.6 Learning Curves

Fig. 25 shows the learning curves for different architectures designed for the block stack-
ing tasks. These learning curves do not reflect final performance: for each evaluation
point, we sample tasks and demonstrations from training data, reset the environment
to the starting point of some particular stage (so that some blocks are already stacked),
and only run the policy for up to one stage. If the training algorithm is DAGGER, these
sampled trajectories are annotated and added to the training set. Hence this evaluation
does not evaluate generalization. We did not perform full evaluation as training pro-
ceeds, because it is very time consuming: each evaluation requires tens of thousands of
trajectories across over > 100 tasks. However, these figures are still useful to reflect some
relative trend.

From these figures, we can observe that while conditioning on full trajectories gives
the best performance which was shown in the main text, it requires much longer training
time, simply because conditioning on the entire demonstration requires more computa-
tion. In addition, this may also be due to the high variance of the training process due
to downsampling demonstrations, as well as the fact that the network needs to learn to
properly segment the demonstration. It is also interesting that conditioning on snapshots
seems to learn faster than conditioning on just the final state, which again suggests that
conditioning on intermediate information is helpful, not only for the final policy, but also
to facilitate training. We also observe that learning happens most rapidly for the initial
stages, and much slower for the later stages, since manipulation becomes more challeng-
ing in the later stages. In addition, there are fewer tasks with more stages, and hence the
later stages are not sampled as frequently as the earlier stages during evaluation.
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(b) Stage 0
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(c) Stage 1
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(d) Stage 2
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(e) Stage 3
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(f) Stage 4
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(g) Stage 5
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(h) Stage 6

Figure 25: Learning curves of block stacking task. The first plot shows the average success rates
over initial configurations of all stages. The subsequent figures shows the breakdown
of each stage. For instance, “Stage 3” means that the first 3 stacking operations are
already completed, and the policy is evaluated on its ability to perform the 4th stacking
operation. 78



4.5 related work

Imitation learning considers the problem of acquiring skills from observing demonstra-
tions. Survey articles include (Schaal, 1999; Calinon, 2009; Argall et al., 2009).

Two main lines of work within imitation learning are behavioral cloning, which per-
forms supervised learning from observations to actions (e.g., (Pomerleau, 1989; Ross
et al., 2011)); and inverse reinforcement learning (A. Ng and S. Russell, 2000), where a
reward function (Abbeel and A. Ng, 2004; Ziebart et al., 2008; Levine et al., 2011; Finn
et al., 2016; Ho and Ermon, 2016) is estimated that explains the demonstrations as (near)
optimal behavior. While this past work has led to a wide range of impressive robotics
results, it considers each skill separately, and having learned to imitate one skill does not
accelerate learning to imitate the next skill.

One-shot and few-shot learning has been studied for image recognition (Vinyals et al.,
2016a; Koch, 2015; Santoro et al., 2016; Ravi and Larochelle, 2017), generative model-
ing (Edwards and Storkey, 2017; Rezende et al., 2016), and learning “fast” reinforcement
learning agents with recurrent policies (Y. Duan et al., 2016b; J. X. Wang et al., 2016).
Fast adaptation has also been achieved through fast-weights (Ba et al., 2016). Like our
algorithm, many of the aforementioned approaches are a form of meta-learning (Thrun
and Pratt, 1998; Schmidhuber, 1987; Naik and Mammone, 1992), where the algorithm
itself is being learned. Meta-learning has also been studied to discover neural network
weight optimization algorithms (S. Bengio et al., 1992; Y. Bengio et al., 1990; Hochreiter
et al., 2001; Schmidhuber, 1992; Andrychowicz et al., 2016; K. Li and Malik, 2016). This
prior work on one-shot learning and meta-learning, however, is tailored to respective
domains (image recognition, generative models, reinforcement learning, optimization)
and not directly applicable in the imitation learning setting. Recently, (Finn et al., 2017a)
propose a generic framework for meta learning across several aforementioned domains.
However they do not consider the imitation learning setting.

Reinforcement learning (R. S. Sutton and Barto, 1998; Bertsekas and Tsitsiklis, 1995)
provides an alternative route to skill acquisition, by learning through trial and error.
Reinforcement learning has had many successes, including Backgammon (Tesauro, 1995),
helicopter control (A. Y. Ng et al., 2003), Atari (Mnih et al., 2015), Go (Silver et al., 2016),
continuous control in simulation (Schulman et al., 2015; Heess et al., 2015b; T. P. Lillicrap
et al., 2016) and on real robots (Peters and Schaal, 2008; Levine et al., 2016). However,
reinforcement learning tends to require a large number of trials and requires specifying
a reward function to define the task at hand. The former can be time-consuming and the
latter can often be significantly more difficult than providing a demonstration (A. Ng
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and S. Russell, 2000).
Multi-task and transfer learning considers the problem of learning policies with ap-

plicability and re-use beyond a single task. Success stories include domain adaptation
in computer vision (Yang et al., 2007; Mansour et al., 2009; Kulis et al., 2011; Aytar and
Zisserman, 2011; L. Duan et al., 2012; Hoffman et al., 2013; Long and J. Wang, 2015;
Tzeng et al., 2014; Donahue et al., 2014) and control (Tzeng et al., 2015; Rusu et al., 2016a;
Sadeghi and Levine, 2016; Gupta et al., 2017; B. Stadie et al., 2017). However, while ac-
quiring a multitude of skills faster than what it would take to acquire each of the skills
independently, these approaches do not provide the ability to readily pick up a new skill
from a single demonstration.

Our approach heavily relies on an attention model over the demonstration and an
attention model over the current observation. We use the soft attention model proposed
in (Bahdanau et al., 2015) for machine translations, and which has also been successful
in image captioning (Xu et al., 2015). The interaction networks proposed in (Battaglia
et al., 2016; Chang et al., 2017) also leverage locality of physical interaction in learning.
Our model is also related to the sequence to sequence model (Sutskever et al., 2014; Cho
et al., 2014b), as in both cases we consume a very long demonstration sequence and,
effectively, emit a long sequence of actions.

4.6 discussion

In this chapter, we presented a simple model that maps a single successful demonstration
of a task to an effective policy that solves said task in a new situation. We demonstrated
effectiveness of this approach on a family of block stacking tasks. There are a lot of
exciting directions for future work. We plan to extend the framework to demonstrations
in the form of image data, which will allow more end-to-end learning without requiring
a separate perception module. We are also interested in enabling the policy to condition
on multiple demonstrations, in case where one demonstration does not fully resolve
ambiguity in the objective. Furthermore and most importantly, we hope to scale up our
method on a much larger and broader distribution of tasks, and explore its potential
towards a general robotics imitation learning system that would be able to achieve an
overwhelming variety of tasks.
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4.7 additional details on block stacking

4.7.1 Full Description of Architecture

We now specify the architecture in pseudocode. We omit implementation details which
involve handling a minibatch of demonstrations and observation-action pairs, as well as
necessary padding and masking to handle data of different dimensions. We use weight
normalization with data-dependent initialization (Salimans and D. P. Kingma, 2016) for
all dense and convolution operations.

4.7.1.1 Demonstration Network

Assume that the demonstration has T time steps and we have B blocks. Our architecture
only make use of the observations in the input demonstration but not the actions. Each
observation is a (3B+ 2)-dimensional vector, containing the (x,y, z) coordinates of each
block relative to the current position of the gripper, as well as a 2-dimensional gripper
state indicating whether it is open or closed.

Module 1 Demonstration Network
Input: Demonstration d ∈ RT×(3B+2)

Hyperparameters: p = 0.95, D = 64

Output: Demonstration embedding ∈ RT̃×B×D, where T̃ = dT(1−p)e is the length of the
downsampled trajectory.
d’← TemporalDropout(d, probability=p)

block_state, robot_state← Split(d’)

h← Conv1D(block_state, kernel_size=1, channels=D)

for a ∈ {1, 2, 4, 8} do
// Residual connections
h’← ReLU(h)

attn_result← NeighborhoodAttention(h’)

h’← Concat({h’, block_state, robot_state}, axis=-1)

h’← Conv1D(h’, kernel_size=2, channels=D, dilation=a)

h’← ReLU(h’)

h← h + h’

end for
demo_embedding← h
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The full sequence of operations is given in Module 1. We first apply temporal dropout
as described in the main text. Then we split the observation into information about the
block and information about the robot, where the first dimension is time and the second
dimension is the block ID. The robot state is broadcasted across different blocks. Hence
the shape of outputs should be T̃ ×B× 3 and T̃ ×B× 2, respectively.

Then, we perform a 1× 1 convolution over the block states to project them to the same
dimension as the per-block embedding. Then we perform a sequence of neighborhood
attention operations and 1× 1 convolutions, where the input to the convolution is the
concatenation of the attention result, the current block position, and the robot’s state.
This allows each block to query the state of other blocks, and reason about the query
result in comparison with its own state and the robot’s state. We use residual connections
during this procedure.

4.7.1.2 Context Network

The pseudocode is shown in Module 2. We perform a series of attention operations over
the demonstration, followed by attention over the current state, and we apply them re-
peatedly through an LSTM with different weights per time step (we found this to be
slightly easier to optimize). Then, in the end we apply a final attention operation which
produces a fixed-dimensional embedding independent of the length of the demonstra-
tion or the number of blocks in the environment.
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Module 2 Context Network
Input: Demonstration embedding hin ∈ RT̃×B×D, current state s ∈ R3B+2

Hyperparameters: D = 64, tlstm = 4,H = 2

Output: Context embedding ∈ R2+6H

// Split the current state into block state ∈ RB×3 and robot state broadcasted to all blocks ∈ RB×2

block_state, robot_state← SplitSingle(s)

// Initialize LSTM output ∈ RB×D and state (including hidden and cell state) ∈ RB×2D

output, state← InitLSTMState(size=B, hidden_dim=D)

for t = 1 to tlstm do
// Temporal attention: every block attend to the same time step
x← output

if t > 1 then
x← ReLU(x)

end if
// Computing query for attention over demonstration ∈ RB×D

q← Dense(x, output_dim=D)

// Compute result from attention ∈ RH×B×D

temp← SoftAttention(query=q, context=h_in, memory=h_in, num_heads=H)

// Reorganize result into shape B× (HD)

temp← Reshape(Transpose(temp, (1, 0, 2)), (B, H*D))

// Spatial attention: each block attend to a different block separately
x← output

if t > 1 then
x← ReLU(x)

end if
x← Concat({x, temp}, axis=-1)

// Computing context for attention over current state ∈ RB×D

ctx← Dense(x, output_dim=D)

// Computing query for attention over current state ∈ RB×D

q← Dense(x, output_dim=D)

// Computing memory for attention over current state ∈ RB×(HD+3)

mem← Concat({block_state, temp}, axis=-1)

// Compute result from attention ∈ RB×H×(HD+3)

spatial← SoftAttention(query=q, context=ctx, memory=mem, num_heads=H)

// Reorganize result into shape B×H(HD+ 3)

spatial← Reshape(spatial, (B, H*(H*D+3)))

// Form input to the LSTM cell ∈ RB×(H(HD+3)+HD+8)

input← Concat({robot_state, block_state, spatial, temp}, axis=-1)

// Run one step of an LSTM with untied weights (meaning that we use different weights per time
step
output, state← LSTMOneStep(input=input, state=state)

end for
// Final attention over the current state, compressing an O(B) representation down to O(1)
// Compute the query vector. We use a fixed, trainable query vector independent of the input data,
with size ∈ R2×D (we use two queries, originally intended to have one for the source block and one for
the target block)
q← GetFixedQuery()

// Get attention result, which should be of shape 2×H× 3
r ← SoftAttention(query=q, context=output, memory=block_state, num_heads=H) // Form the fi-
nal context embedding (we pick the first robot state since no need to broadcast here)
context_embedding← Concat({robot_state[0], Reshape(r, 2*H*3)})
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4.7.1.3 Manipulation Network

Given the context embedding, this module is simply a multilayer perceptron. Pseu-
docode is given in Module 3.

Module 3 Manipulation Network

Input: Context embedding hin ∈ R2+6H

Hyperparameters: H = 2

Output: Predicted action distribution ∈ R|A|

h← ReLU(Dense(h_in, output_dim=256))

h← ReLU(Dense(h, output_dim=256))

action_dist← Dense(h, output_dim=|A|)

4.7.2 Exact Performance Numbers

Exact performance numbers are presented for reference:
• Table 32 and Table 33 show the success rates of different architectures on training

and test tasks, respectively;
• Table 34 shows the success rates across all tasks as the number of ensembles is

varied;
• Table 35 shows the success rates of tasks that are equivalent to abcd up to permu-

tations;
• Table 36, Table 37, Table 38, Table 39, and Table 40 show the breakdown of different

success and failure scenarios for all considered architectures.

#Stages Demo DAGGER BC Snapshot Final state

1 99.1% 99.1% 99.1% 97.2% 98.8%
2 95.6% 94.3% 93.7% 92.6% 86.7%
3 88.5% 88.0% 86.9% 86.7% 84.8%
4 78.6% 78.2% 76.7% 76.4% 71.9%
5 67.3% 65.9% 65.4% 62.5% 60.6%
6 55.7% 51.5% 52.4% 47.0% 43.6%
7 42.8% 34.3% 37.5% 31.4% 31.5%

Table 32: Success rates of different architectures on training tasks of block stacking.
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#Stages Demo DAGGER BC Snapshot Final state

2 95.8% 94.9% 95.9% 92.8% 94.1%
4 77.6% 77.0% 74.8% 77.2% 75.8%
5 65.9% 65.9% 64.3% 61.1% 51.9%
6 49.4% 50.6% 46.5% 42.6% 35.9%
7 46.5% 36.5% 38.5% 32.8% 32.0%
8 29.0% 18.0% 24.0% 19.0% 20.0%

Table 33: Success rates of different architectures on test tasks of block stacking.

#Stages 1 Ens. 2 Ens. 5 Ens. 10 Ens. 20 Ens.

1 91.9% 95.4% 98.8% 99.1% 98.7%
2 92.3% 92.2% 94.5% 94.6% 94.1%
3 86.0% 86.8% 87.9% 88.0% 87.9%
4 76.6% 77.4% 77.9% 78.0% 78.3%
5 65.1% 65.0% 65.3% 65.9% 65.5%
6 49.0% 50.4% 50.1% 51.3% 50.8%
7 34.4% 36.1% 36.0% 34.9% 36.8%
8 20.0% 21.0% 21.0% 18.0% 20.0%

Table 34: Success rates of varying number of ensembles using the DAGGER policy conditioned
on full trajectories, across both training and test tasks.
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Task ID Success Rate

abcd 83.0%
abdc 86.0%
acbd 92.0%
acdb 84.0%
adbc 91.0%
adcb 88.0%
bacd 92.0%
badc 90.0%
bcad 92.0%
bcda 88.0%
bdac 94.0%
bdca 88.0%
cabd 82.0%
cadb 87.0%
cbad 95.0%
cbda 87.0%
cdab 91.0%
cdba 93.0%
dabc 90.0%
dacb 92.0%
dbac 88.0%
dbca 90.0%
dcab 91.0%
dcba 84.0%

Table 35: Success rates of a set of tasks that are equivalent up to permutations, using the DAGGER
policy conditioned on full trajectories.
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#Stages Success Recoverable failure Manipulation failure Wrong move

1 99.3% 0.0% 0.7% 0.0%
2 95.9% 0.4% 3.7% 0.0%
3 89.1% 0.7% 10.1% 0.1%
4 79.2% 1.2% 19.4% 0.1%
5 67.5% 1.4% 30.9% 0.2%
6 55.2% 1.4% 43.1% 0.3%
7 44.6% 1.7% 53.2% 0.6%
8 30.9% 4.3% 64.9% 0.0%

Table 36: Breakdown of success and failure scenarios for Demo policy.

#Stages Success Recoverable failure Manipulation failure Wrong move

1 99.4% 0.0% 0.6% 0.0%
2 95.3% 0.9% 3.8% 0.0%
3 89.1% 1.9% 8.8% 0.1%
4 79.5% 3.5% 16.7% 0.3%
5 69.1% 5.0% 25.6% 0.3%
6 55.8% 7.3% 36.4% 0.5%
7 39.0% 8.6% 51.5% 0.8%
8 21.2% 14.1% 62.4% 2.4%

Table 37: Breakdown of success and failure scenarios for DAGGER policy.
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#Stages Success Recoverable failure Manipulation failure Wrong move

1 99.6% 0.0% 0.4% 0.0%
2 95.6% 1.1% 3.2% 0.1%
3 88.1% 2.2% 9.5% 0.2%
4 78.5% 4.5% 16.8% 0.2%
5 67.2% 6.6% 25.7% 0.4%
6 53.9% 8.3% 37.1% 0.6%
7 40.6% 9.8% 48.7% 0.9%
8 27.0% 13.5% 58.4% 1.1%

Table 38: Breakdown of success and failure scenarios for BC policy.

#Stages Success Recoverable failure Manipulation failure Wrong move

1 99.1% 0.0% 0.9% 0.0%
2 94.5% 1.6% 3.8% 0.1%
3 88.0% 2.5% 9.3% 0.2%
4 78.9% 4.6% 16.2% 0.3%
5 65.6% 8.0% 25.8% 0.6%
6 50.8% 8.3% 40.2% 0.7%
7 36.1% 9.2% 54.2% 0.4%
8 21.6% 11.4% 65.9% 1.1%

Table 39: Breakdown of success and failure scenarios for Snapshot policy.
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#Stages Success Recoverable failure Manipulation failure Wrong move

1 99.2% 0.0% 0.8% 0.0%
2 95.1% 1.3% 3.6% 0.0%
3 86.7% 2.5% 9.7% 1.1%
4 75.2% 4.0% 18.3% 2.5%
5 60.5% 4.3% 31.2% 4.0%
6 45.5% 4.7% 45.5% 4.3%
7 34.9% 5.6% 57.3% 2.2%
8 24.1% 3.6% 72.3% 0.0%

Table 40: Breakdown of success and failure scenarios for Final state policy.

4.7.3 More Visualizations

Fig. 26 and Fig. 27 show the full set of heatmaps of attention weights. Interestingly, in
Fig. 26, we observe that rather than attending to two blocks at a time, as we originally
expected, the policy has learned to mostly attend to only one block at a time. This makes
sense because during each of the grasping and the placing phase of a single stacking
operation, the policy needs to only pay attention to the single block that the gripper
should aim towards. For context, Fig. 28 and Fig. 29 show key frames of the neural
network policy executing the task.
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(a) Head 0 (b) Head 1

(c) Head 2 (d) Head 3

Figure 26: Heatmap of attention weights over different blocks of all 4 query heads.
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(a) Head 0 (b) Head 1

(c) Head 2 (d) Head 3

(e) Head 4 (f) Head 5

Figure 27: Heatmap of attention weights over downsampled demonstration trajectory of all 6
query heads. There are 2 query heads per step of LSTM, and 3 steps of LSTM are
performed.
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Figure 28: Illustration of the task used for the visualization of attention heatmaps (first half). The
task is ab cde fg hij. The left side shows the key frames in the demonstration. The
right side shows how, after seeing the entire demonstration, tthe policy reproduces the
same layout in a new initialization of the same task.
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Figure 29: Illustration of the task used for the visualization of attention heatmaps (second half).
The task is ab cde fg hij. The left side shows the key frames in the demonstration.
The right side shows how, after seeing the entire demonstration, tthe policy reproduces
the same layout in a new initialization of the same task.
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5
C O N C L U S I O N

In this thesis, we have investigated several instantiations of meta learning for control. We
start by evaluating current state-of-the-art algorithms on a set of challenging benchmark
environments, which motivate the need for better reinforcement learning algorithms.
Then, rather than proposing hand-designed algorithms, we advocate a meta learning
approach to automate the algorithm design process by structuring the algorithm as a
general parameterized model. This model is differentiable so that it can be end-to-end
optimized on a set of environments. The two meta learning frameworks that are pre-
sented, RL2 and one-shot imitation learning, demonstrate that meta learning can be ap-
plied to complex, high-dimensional control problems given sufficient data. Meanwhile,
analyses of these algorithms suggest that a lot more can be done. Below, we point out
several important future directions that should be further investigated.

Data collection: As seen in Section 3.3.4, choosing an appropriate distribution of tasks
for meta learning is challenging. A very restrictive distribution can render the problem
too easy to solve, which can fail to evaluate important aspects of meta learning, such
as whether the algorithm can learn to explore. While benchmark environments such
as bandits, random MDPs, and visual navigation provide adequate challenge, they are
less connected to real-world applications compared to datasets in supervised learning
such as ImageNet. There has been much recent progress in this direction, including
OpenAI Universe (OpenAI, 2017), a platform that can convert any video game into a
reinforcement learning environment, and World of Bits (Shi et al., 2017), a collection of
web navigation tasks. However, these environments can be computationally demanding
for individual researchers and small research groups. It would be very valuable to de-
velop benchmark datasets that are relevant, challenging, and yet computationally feasi-
ble. In addition, exciting opportunities remain in building datasets of tasks for real-world
robotic applications.

Another angle is to further explore mechanisms for task specification. In RL2, the task
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is specified via a reward function, while in one-shot imitation learning, the task is spec-
ified by first-person expert demonstrations of the task. One can consider many possible
alternatives, such as specifying a task through language (see ), imperfect demonstrations
(from which the learned algorithm should infer the underlying objective, and surpass the
performance of the demonstrator), third-person demonstrations (see ), or a combination
of rewards and demonstrations.

Overcoming underfitting: In RL2, we have observed that the learned algorithm can
be outperformed by human-designed algorithms on the more challenging environments
with long horizons, including multi-armed bandits and tabular MDPs. This can be con-
sidered a form of underfitting, where the algorithm fails to achieve good performance
even on the training tasks (in our case, the algorithm has an infinite supply of train-
ing environments). On the other hand, the ablation study in Section 3.3.1 suggests that
this underfitting behavior is not bottlenecked by the policy architecture (though (Mishra
et al., 2017) indicate that architectural choices do matter), as policies trained via super-
vised learning achive much better performance. Hence the underfitting mostly happens
at an algorithmic level rather than architectural: since the fast algorithm is trained via
RL, it inherits the usual challenges such as exploration in long-horizon problems. This
is very different from supervised learning, where underfitting is rarely a concern given
a sufficiently expressive model. To overcome this issue, better meta learning algorithms
need to be developed. Promising directions include incorporating auxiliary objectives,
utilizing human demonstrations as additional supervision, and curriculum learning.

Overcoming overfitting: As discussed above, it can be challenging to collect a diverse
set of tasks for meta learning. Therefore, it is particularly important to develop meta
learning algorithms that can generalize well from a manageable number of training tasks,
in the sense that it can perform well on new tasks sampled from the same distribution.
One idea is to restrict the set of algorithms expressible by the parameterized model. At
one extreme we have methods such as RL2, TCML (Mishra et al., 2017), and one-shot
imitation learning, which use generic recurrent architectures and are, in theory, capable
of approximating any algorithm that can run on a turing machine (Siegelmann and
Sontag, 1995). At the other extreme, we have methods that merely tune hyperparameters
over a set of training tasks (Ishii et al., 2002; Schweighofer and Doya, 2003). There are
many possibilities between these two extremes. For example, MAML (Finn et al., 2017a)
and MIL (Finn et al., 2017b) restrict the underlying algorithm to be policy gradient or
behavior cloning, and only meta-learn an initial set of parameters. There are many other
possibilities by making certain components of an existing algorithm more flexible and
amenable for optimization. We leave this to the reader as food for thought.
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Another idea is to apply techniques common in supervised learning, such as data
augmentation and regularization. We can take inspiration from domain randomization
(Sadeghi and Levine, 2016; Tobin et al., 2017a; Tobin et al., 2017b; Peng et al., 2017), an
effective technique for transferring neural networks from simulation to real world by
drastically randomizing the visual and physical features within the virtual world. Com-
bined with techniques such as Neural Style Transfer (Gatys et al., 2015) and Image-to-
Image Translation (Isola et al., 2016; Zhu et al., 2017), we can potentially build powerful
data augmentation operators over tasks. For regularization, we should ask ourselves
the following question: how should we properly regularize the weights of the learned
algorithm, so that it impose an implicit preference of simpler algorithms over more com-
plex ones? Moreover, can we define a more proper metric of capacity, analogous to VC
dimension (Vapnik and Chervonenkis, 1971), but over families of algorithms?

At an even more advanced level, we want to move beyond generalizing to new tasks
from the same distribution. Eventually, we want to deploy learning systems with appro-
priate prior knowledge baked in, that can deal with distributions of tasks that slowly
drift over time. This is a much more practical setting than assuming that the distribution
over tasks never change, however it also makes learning more challenging. One promis-
ing idea is to jointly learn a dynamic distribution over tasks as well as an adaptive fast
learning algorithm with an adversarial interaction between them (Goodfellow et al., 2014;
Sukhbaatar et al., 2017).

∗ ∗ ∗

Over the course of four billion years, nature has witnessed an endless process of evolu-
tion, which has led to the emergence of us humans. In a certain sense, we are the product
of the most powerful meta learning algorithm to date. It is an exciting journey ahead of
us to develop learning machines that can fully utilize the inductive bias of the world we
live in, and thus reaching or even surpassing the pace of human learning.
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